Ans. :(C)
What is the procedure of doing this question ??
Attachments:
Answers
Answered by
0
Answer:
cos2θ=1-2sin^2θ
2sin^2θ=1+ cos2θ
sin^2θ= (1+ cos2θ)/2
Answered by
2
For this, we may remember the trigonometric compound angle formula given below.
cos(A + B) = cosA · cosB - sinA · sinB
Here, let A = B = θ. So,
cos(θ + θ) = cosθ · cosθ - sinθ · sinθ
⇒ cos(2θ) = cos²θ - sin²θ
⇒ cos(2θ) = cos²θ - (2sin²θ - sin²θ)
⇒ cos(2θ) = cos²θ - 2sin²θ + sin²θ
⇒ cos(2θ) = sin²θ + cos²θ - 2sin²θ
⇒ cos(2θ) = 1 - 2sin²θ [∵ sin²θ + cos²θ = 1]
⇒ 2sin²θ = 1 - cos(2θ)
⇒ sin²θ = [1 - cos(2θ)] / 2
Thus we get that option (C) is correct.
Similar questions