Math, asked by knsajid202, 3 months ago

ans fast and get 5.0 star...​

Attachments:

Answers

Answered by izma1334
0

Answer:

49

Step-by-step explanation:

I hope it will help you understand the concept and bye

Answered by mathdude500
2

\large\underline{\bold{Solution-}}

 \sf \: Let \: \vec{a} \:  =  \: 2\hat i \:  + 2\hat j \:  - 3\hat k \:

 \sf \: Let \: \vec{b} \:  =  \: 3\hat i \: + k\hat j \: + 2\hat k \:

 \sf \: Let \: \vec{c} \:  =  \: \hat i + 2\hat j \: + 3\hat k \:

It is given that

  • Vectors are co-planar,

 \sf \:  \therefore \:  \bf \: [ \: \vec{a} \:  \: \vec{b} \:  \: \vec{c} \:  ] =  \: 0

 \sf \: \begin{array}{|ccc|}\sf 2 &\sf 2 &\sf  - 3 \\ \sf 3 &\sf k &\sf 2 \\ \sf 1 &\sf 2 &\sf 3\end{array} = 0

 \sf \: 2(3k - 4) - 2(9 - 2)  - 3(6 - k) = 0

 \sf \: 6k - 8 - 14 - 18 + 3k = 0

 \sf \: 9k - 40 = 0

\:  \:  \: \boxed{ \bf{k \:  =  \: \dfrac{40}{9} }}

  \: \boxed{ \bf{Hence,  \: option \:  (B) \:  is  \: correct}}

Additional Information :-

  1. \:  \:  \: \boxed{ \bf{[ \: \vec{a} \:  \: \vec{b} \:  \: \vec{c} \:  ] = \vec{a}.(\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}).\vec{c}}}

  2. \:  \:  \: \boxed{ \bf{[ \: \vec{a} \:  \: \vec{b} \:  \: \vec{c} \:  ] = [ \: \vec{b} \:  \: \vec{c} \:  \: \vec{a} \:  ] = [ \: \vec{c} \:  \: \vec{a} \:  \: \vec{b} \:  ]}}

  3. \:  \:  \: \boxed{ \bf{[ \: \vec{a} \:  \: \vec{b} \:  \: \vec{b} \:  ] = 0}}

  4. \:  \:  \: \boxed{ \bf{[ \: \vec{a} + \vec{d} \:  \: \vec{b} \:  \: \vec{c} \:  ] = [ \: \vec{a} \:  \: \vec{b} \:  \: \vec{c} \:  ] + [ \: \vec{d} \:  \: \vec{b} \:  \: \vec{c} \:  ]}}

Similar questions