Math, asked by aastha4865, 1 year ago

Ans fast......

step by step explanation...

Don't copy❌

#Dramaqueen⭐

Attachments:

Answers

Answered by siddhartharao77
13

Step-by-step explanation:

LHS:

Given: (CosecA - sinA)(secA - cosA)

=(\frac{1}{sinA}-sinA)(\frac{1}{cosA}-cosA)

=(\frac{1-sin^2A}{sinA})(\frac{1-cos^2A}{cosA})

=(\frac{cos^2A}{sinA})(\frac{sin^2A}{cosA} )

=cosAsinA


RHS:

Given:\frac{1}{tanA+cotA}

=\frac{1}{\frac{1}{sinA} + \frac{cosA}{sinA}}

=\frac{cosAsinA}{cos^2A+sin^2A}

=cosAsinA


LHS = RHS.


Hope it helps!


Anonymous: Fabulous
siddhartharao77: Thank you
Topperworm: Great dear
siddhartharao77: Thanks dear
aastha4865: hey siddhart.....i have one more question.....
siddhartharao77: ok
aastha4865: plz check in my questions.....i see the 1st question of surface area & volume
siddhartharao77: Ok!
Topperworm: Sir can u please check out my problem also please
siddhartharao77: Ok.
Answered by vampire002
9
QUESTION :

(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)

ANSWER :

LHS=

(cosecA-sinA)(secA-cosA)

NOW

1/cosA =secA

1/sinA=cosecA

so

LHS

=((1/sinA)-sinA)((1/cosA)-cosA)

= ((1-sin²A)/sinA)((1-cos²A)/cosA)

now as sin²A+cos²A=1

lhs

= (cos²A/sinA)(sin²A/cosA)

= (cos²A.sin²A)/(sinA.cosA)

= sinA.cosA.........1

now RHS=

1/(tanA+cotA)

Now as

tanA=(sinA/cosA)

cotA=(cosA/sinA)

we get

rhs

= 1/((sinA/cosA) + (cosA/sinA))

= 1/((sin²A+cos²A)/sinA.cosA)

but sin²A+cos²A=1

so RHS=

1/(1/sinA.cosA)

= sinA.cosA.......2

hence rhs of 1 and 2 are equal

so LHS will 100% equal

hence

(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)

hence proved

NOTE :

While solving such questions

we must simplify the lhs as much as possible

but if then also we aren't getting the RHS then simplify RHS too

which will help us to prove the question

aastha4865: thankssss.....so much
vampire002: welcm✔☺
Similar questions