Ans fast......
step by step explanation...
Don't copy❌
#Dramaqueen⭐
Attachments:
Answers
Answered by
13
Step-by-step explanation:
LHS:
Given: (CosecA - sinA)(secA - cosA)
RHS:
∴ LHS = RHS.
Hope it helps!
Anonymous:
Fabulous
Answered by
9
QUESTION :
(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)
ANSWER :
LHS=
(cosecA-sinA)(secA-cosA)
NOW
1/cosA =secA
1/sinA=cosecA
so
LHS
=((1/sinA)-sinA)((1/cosA)-cosA)
= ((1-sin²A)/sinA)((1-cos²A)/cosA)
now as sin²A+cos²A=1
lhs
= (cos²A/sinA)(sin²A/cosA)
= (cos²A.sin²A)/(sinA.cosA)
= sinA.cosA.........1
now RHS=
1/(tanA+cotA)
Now as
tanA=(sinA/cosA)
cotA=(cosA/sinA)
we get
rhs
= 1/((sinA/cosA) + (cosA/sinA))
= 1/((sin²A+cos²A)/sinA.cosA)
but sin²A+cos²A=1
so RHS=
1/(1/sinA.cosA)
= sinA.cosA.......2
hence rhs of 1 and 2 are equal
so LHS will 100% equal
hence
(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)
hence proved
NOTE :
While solving such questions
we must simplify the lhs as much as possible
but if then also we aren't getting the RHS then simplify RHS too
which will help us to prove the question
(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)
ANSWER :
LHS=
(cosecA-sinA)(secA-cosA)
NOW
1/cosA =secA
1/sinA=cosecA
so
LHS
=((1/sinA)-sinA)((1/cosA)-cosA)
= ((1-sin²A)/sinA)((1-cos²A)/cosA)
now as sin²A+cos²A=1
lhs
= (cos²A/sinA)(sin²A/cosA)
= (cos²A.sin²A)/(sinA.cosA)
= sinA.cosA.........1
now RHS=
1/(tanA+cotA)
Now as
tanA=(sinA/cosA)
cotA=(cosA/sinA)
we get
rhs
= 1/((sinA/cosA) + (cosA/sinA))
= 1/((sin²A+cos²A)/sinA.cosA)
but sin²A+cos²A=1
so RHS=
1/(1/sinA.cosA)
= sinA.cosA.......2
hence rhs of 1 and 2 are equal
so LHS will 100% equal
hence
(cosecA-sinA)(secA-cosA) = 1/(tanA+cotA)
hence proved
NOTE :
While solving such questions
we must simplify the lhs as much as possible
but if then also we aren't getting the RHS then simplify RHS too
which will help us to prove the question
Similar questions