Physics, asked by morecs2000, 11 months ago

ans is 1rad and 5m pleas solve​

Attachments:

Answers

Answered by Anonymous
1

\huge\underline{\underline{\bf \orange{Question-}}}

A body executing S.H.M.S.H.M. along a straight line has a velocity of {\sf 3m/s} when it is at a distance of 4m from its mean position and {\sf 4m/s} when it is at a distance of 3m from its mean position. Its angular frequency and amplitude are:

\huge\underline{\underline{\bf \orange{Solution-}}}

  • {\sf v_1=3\:m/s}
  • {\sf x_1=4\:m}
  • {\sf v_2=4\:m/s}
  • {\sf x_2=3\:m/s}

\large{\boxed{\sf \blue{V=\omega\sqrt{A^2-X^2}}}}

A = Amplitude

\implies{\sf v_1=\omega\sqrt{A^2-x_1}}

\implies{\bf 3=\omega\sqrt{A^2-(4)^2}\:\:\:\:→(1)}

\implies{\sf v_2=\omega\sqrt{A^2-x_2} }

\implies{\bf 4=\omega\sqrt{A^2-(3)^2}\:\:\:→(2)}

\implies{\sf \dfrac{3}{4}=\dfrac{\omega}{\omega}\dfrac{\sqrt{A^2-(4)^2}}{A^2-(3)^2}} }

\implies{\sf \dfrac{9}{16}=\dfrac{A^2-16}{A^2-9}}

\implies{\sf 9(A^2-9)=16(A^2-16) }

\implies{\sf 9A^2-81=16A^2-256}

\implies{\sf 9A^2-16A^2=-256+81}

\implies{\sf -7A^2=-175}

\implies{\sf A^2=25}

\implies{\bf \red{Amplitude (A)=5\:m}}

Putting Value of A in equation 1 we get ➝

\implies{\sf 3=\omega\sqrt{A^2-(4)^2} }

\implies{\sf 3=\omega\sqrt{5^2-4^2} }

\implies{\sf 3=\omega\sqrt{25-16}}

\implies{\sf 3^2=\omega×9}

\implies{\bf \red{\omega = 1\:rad/s}}

\huge\underline{\underline{\bf \orange{Answer-}}}

Amplitude {\bf \red{5\:m}}

Angular velocity {\bf \red{\omega = 1\:rad/s}}

Similar questions