Math, asked by ArjunTyagi47, 7 months ago

ans is 5 but I wanna know the method . U can also briefly explain, thanks​

Attachments:

Answers

Answered by Bidikha
3

Given -

 \alpha,  \:  \beta,  \:  \gamma  \: are \: the \: zeroes \: of \: p(x) =  {6x}^{3}  +  {3x}^{2}  - 5x + 1 = 0

To find -

the \: value \: of \: ( \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma } )

Solution -

 {6x}^{3}  +  {3x}^{2}  - 5x + 1 = 0

Here,

a=6

b=3

c= -5

d=1

 \alpha,   \:  \beta,  \: and \:  \gamma  \: are \: zeroes \: of \: given \: polynomial

 \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ - 3}{6}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ - 1}{2}

 \alpha  \beta  \gamma  =  \frac{ - d}{a}  =  \frac{ - 1}{6}

 \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}  =  \frac{ - 5}{6}

Now,

 = ( \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma } )

 =  \frac{ \beta  \gamma  +  \alpha  \gamma  +   \beta  \gamma }{ \alpha  \beta  \gamma }

 =   \frac{( \frac{c}{a}) }{( \frac{ - d}{a}) }

 =  \frac{ (\frac{ - 5}{6}) }{( \frac{ - 1}{6}) }

 =  \frac{ - 5}{6}  \div  \frac{ - 1}{6}

 =  \frac{ - 5}{6}  \times  - 6

 = 5

\therefore \: the \: value \: of \: ( \frac{1}{ \alpha }  +  \frac{1}{ \beta }  +  \frac{1}{ \gamma } ) \: is \: 5

Similar questions