Ans me pls it's urgent
Attachments:
Answers
Answered by
1
(x^2-y^2)+(y^2-z^2)+(z^2-x^2)
=x^2-y^2+y^2-z^2+z^2-x^2
=0
Answered by
2
Solution:
Given Expression:
= (x - y)(x + y) + (y - z)(y + z) + (z - x)(z + x)
We know that:
→ (a + b)(a - b) = a² - b²
Applying the above identity, we get:
= (x)² - (y)² + (y)² - (z)² + (z)² - (x)²
= (x² - x²) + (y² - y²) + (z² - z²)
= 0
Therefore:
→ (x - y)(x + y) + (y - z)(y + z) + (z - x)(z + x) = 0
★ Which is our required answer.
Answer:
- (x - y)(x + y) + (y - z)(y + z) + (z - x)(z + x) = 0
Learn More:
Algebraic Identities.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Similar questions