Math, asked by akileswarlokesh04, 1 year ago

ans my quess tiio pls pls​

Attachments:

Answers

Answered by Anonymous
55

SOLUTION

</p><p>\qquad \quad \frac{\cos^{2} \left(45 + \theta \right) + \cos^{2} \left( 45 - \theta \right)}{\tan \left(60 +\theta \right) \times \tan \left(30 - \theta \right) } + \left( \cot 30^{\circ} + \sin 90^{\circ} \right) \times \left( \tan 60^{\circ} - \sec 0^{\circ} \right)</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{ \cos^{2} \left( 45 + \theta \right) + \sin^{2} \left( 90 - 45 + \theta \right)  }{\tan \left( 60 + \theta \right) \times \cot \left( 90 - 30 + \theta \right) } + \left( \cot 30^{\circ} + \sin 90^{\circ} \right) \times \left( \tan 60^{\circ} - \sec 0^{\circ} \right)</p><p></p><p>\qquad \left( \because \cos \left( 90 - \theta \right) = \sin \theta \quad , \; \tan \left( 90 - \theta \right) = \cot \theta \right)</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \frac{\cos^{2} \left( 45 + \theta \right) + \sin^{2} \left( 45 + \theta \right) }{ \tan \left( 60 + \theta \right) \times \cot \left( 60 + \theta \right) } + \left( \sqrt{3} + 1 \right) \cdot \left( \sqrt{3} - 1 \right) </p><p></p><p>\qquad \left( \because \cot 30^{\circ} = \sqrt{3} \quad , \; \sin 90^{\circ} , \sec 0^{\circ} = 1 \quad , \; \tan 60^{\circ} = \sqrt{3} \right) </p><p></p><p>\\ \\ </p><p></p><p>\rightarrow \quad \frac{1}{\cancel{\tan \left( 60 + \theta \right) } \times \frac{1}{\cancel{\tan \left( 60 + \theta \right) }}} + \left( \sqrt{3} + 1 \right) \cdot \left( \sqrt{3} - 1 \right)</p><p></p><p>\qquad \left( \because \sin^{2} \theta + \cos^{2} \theta = 1 \quad , \; \tan \theta = \frac{1}{\cot \theta } \right)</p><p></p><p>\\ \\ </p><p></p><p>\rightarrow \quad 1 + \left( \sqrt{3} \right)^{2} - 1^{2}  \qquad \left( \because \left( a + b \right) \left( a - b \right) = a^{2} - b^{2} \right) </p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad 1 + 3 - 1</p><p></p><p>\\ \\</p><p></p><p>\rightarrow \quad \bold{3}</p><p>

Answered by Anonymous
27

Answer:

\large \bold\red{ 3}

Step-by-step explanation:

We have to evaluate,

 \large\bold{\frac{ { \cos}^{2}(45 +  \theta) +  { \cos }^{2}(45 -  \theta  )  }{ \tan(60 +  \theta ) \times  \tan(30 -  \theta )  }  + ( \cot30 +  \sin90)  \times ( \tan60 -   \sec0)}

But,

We know that,

  • \bold{ \sin(90 -  \alpha )  =  \cos( \alpha )}
  • \bold{ \tan(90 -  \alpha )  =  \cot( \alpha ) }

Therefore,

Further simplifying,

We get,

\large{ =  \frac{ { \cos}^{2} (45 +  \theta) +  { \sin}^{2} (90 - 45 +  \theta)  }{  \tan(60 +  \theta )  \times  \cot(90 - 30 +  \theta )  }  + ( \cot30 +  \sin90)  \times ( \tan60 -  \sec0)}

\large{ =  \frac{ { \cos }^{2}(45 +  \theta) +  { \sin}^{2} (45 +  \theta)   }{ \tan(60 +  \theta )  \times  \cot(60 +  \theta ) }  + ( \cot30 +  \sin90)  \times(  \tan60 -  \sec0 )}

But,

We know that,

  •  \bold{{ \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1}

  • \bold{ \tan( \alpha )  \times  \cot( \alpha )   = 1}

  • \bold{ \cot(30)  =  \sqrt{3} }

  • \bold{ \sin(90)  = 1}

  • \bold{ \tan(60)  =  \sqrt{3}}

  • \bold{ \sec(0)  = 1}

Therefore,

Putting the values,

We get,

 \large{=  \frac{1}{1}  + ( \sqrt{3}  + 1)( \sqrt{3}  - 1)}

But,

  • \bold{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

Therefore,

We get,

 = 1 +  {( \sqrt{3} )}^{2}  -  {(1)}^{2}  \\  \\  = 1 + 3 - 1 \\  \\  = \large \bold{ 3}

Similar questions