Math, asked by srishtirastogi7859, 1 year ago

ans please integration by substitution ​

Attachments:

Answers

Answered by IamIronMan0
1

Answer:

 \int \sqrt{ \cos(x) }  \sin { }^{3} (x) dx \\  \\  = \int \sqrt{ \cos(x) }  \sin { }^{2} x. \sin(x) dx \\  \\  = \int \sqrt{ \cos(x) } (1 -  \cos{ }^{2} (x) ) \sin(x) dx \\  \\ put \:  \: y =  \cos(x)  \implies \: sin \: xdx = dy \\ limits \:  \:  \cos(0)  \:  \: to \:  \: cos \frac{\pi}{2}  \:  \: or \:  \: 1 \:  \: to \:  \: 0 \\  \\  \int \:  \sqrt{y} (1 -  {y}^{2} )dy \\  \\  =  \int \: ( {y}^{1 \over2}  -  {y}^{5 \over2} )dy \\  \\  = ( \frac{2}{3}  -  \frac{2}{7} ) \\  \\  =  \frac{8}{20}

Similar questions