Math, asked by aarzoosikarwar572, 10 months ago

ans please ... must watch waiting for your answer​

Attachments:

Answers

Answered by BrainlyPopularman
5

Question :

▪︎ Solve for 'x' :

 \: \: \: { \bold{2( \dfrac{2x - 1}{x + 3})   - 3( \dfrac{x + 3}{2x - 1} ) = 5 }} \\ ; x ≠ -3 , ½

ANSWER :

▪︎ x = -⅕ , x = -10

EXPLANATION :

GIVEN :

▪︎  \: \: \: { \bold{2( \dfrac{2x - 1}{x + 3})   - 3( \dfrac{x + 3}{2x - 1} ) = 5}}  \\

TO FIND :

Value of 'x'.

SOLUTION :

▪︎ Let's put  \:  \implies \:  { \bold{\dfrac{2x - 1}{x + 3} = t}}  \\

 \:  \\ \implies \:  { \bold{2t -  \frac{3}{t} = 5 }}  \\

 \: \\ \implies \:  { \bold{2 {t}^{2}  - 3 = 5 t}}  \\

 \: \\   \implies \:  { \bold{2 {t}^{2} - 5t  - 3 = 0}}  \\

 \: \\   \implies \:  { \bold{2 {t}^{2} -6t + t - 3 = 0}}  \\

 \: \\   \implies \:  { \bold{2 t(t - 3) +1( t - 3) = 0}}  \\

 \: \\   \implies \:  { \bold{(2 t + 1)(t - 3) = 0}}  \\

 \: \\   \implies \:  { \bold{t =  -  \dfrac{1}{2}  \: , \: t = 3}}  \\

(1) When t = -½ :–

 \:  \implies \:  { \bold{\dfrac{2x - 1}{x + 3} =  -  \dfrac{1}{2} }}  \\

 \: \\ \implies \:  { \bold{2(2x - 1) =  - (x + 3)}}  \\

 \: \\  \implies \:  { \bold{4x - 2 =  - x  -  3}}  \\

 \: \\  \implies \:  { \bold{5x =  - 1}}  \\

 \: \\ \implies \:  {  \boxed{\bold{x =  -   \frac{1}{5} }}}  \\

(2) When t = 3 :

 \:   \\ \implies \:  { \bold{\dfrac{2x - 1}{x + 3} = 3}}  \\

 \:   \\ \implies \:  { \bold{2x - 1 = 3(x + 3)}}  \\

 \:   \\ \implies \:  { \bold{2x - 1 = 3x + 9}}  \\

 \:   \\ \implies \:  { \bold{2x - 3x = 1 + 9}}  \\

 \:   \\ \implies \:  { \boxed{ \bold{x= - 10}}}  \\

Similar questions