ans pls...
.
.
.
.
if p+q=r and p=q=r then find the angle between p and q
Answers
Answer:
The Angle Between P & Q is 120°
Explanation:
Answer:
The Angle Between P & Q is 120°
Given:
P + Q = R
|P| = |Q| = |R|
Explanation:
\rule{300}{1.5}
As Given |P| = |Q| = |R|
From vector's Formula,
\large\bigstar\;{\boxed{\tt R = \sqrt{ P^2 + Q^2 + 2\;PQ \cos \theta}}}★
R=
P
2
+Q
2
+2PQcosθ
\begin{gathered}\bold{Here}\begin{cases}\text{R Denotes resultant} \\ \text{P Denotes Vector} \\ \text{Q denotes Vector} \\ \theta \text{ Denotes Angle Between vectors}\end{cases}\end{gathered}
Here
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧
R Denotes resultant
P Denotes Vector
Q denotes Vector
θ Denotes Angle Between vectors
Now,
\large{\boxed{\tt R = \sqrt{ P^2 + Q^2 + 2\;PQ \cos \theta}}}
R=
P
2
+Q
2
+2PQcosθ
Substituting the values,
\longmapsto\large{\tt R = \sqrt{ P^2 + Q^2 + 2\;PQ \cos \theta}}⟼R=
P
2
+Q
2
+2PQcosθ
Let |P| = |Q| = |R| = x [ Only in Magnitude ]
\longmapsto\large{\tt x = \sqrt{ x^2 + x^2 + 2\;x \times x \cos \theta}}⟼x=
x
2
+x
2
+2x×xcosθ
\longmapsto\large{\tt x^2 = x^2 + x^2 + 2\;x \times x \cos \theta}⟼x
2
=x
2
+x
2
+2x×xcosθ
\longmapsto\large{\tt x^2 = x^2 + x^2 + 2\;x^2 \cos \theta}⟼x
2
=x
2
+x
2
+2x
2
cosθ
\longmapsto\large{\tt x^2- x^2 = x^2 + 2\;x^2 \cos \theta}⟼x
2
−x
2
=x
2
+2x
2
cosθ
\longmapsto\large{\tt 0 = x^2 + 2\;x^2 \cos \theta}⟼0=x
2
+2x
2
cosθ
\longmapsto\large{\tt - x^2 = 2\;x^2 \cos \theta}⟼−x
2
=2x
2
cosθ
\longmapsto\large{\tt 2\;x^2 \cos \theta = - x^2}⟼2x
2
cosθ=−x
2
\longmapsto\large{\tt \cos \theta = \dfrac{- x^2}{2x^2}}⟼cosθ=
2x
2
−x
2
\longmapsto\large{\tt \cos \theta = \cancel{\dfrac{- x^2}{2x^2}}}⟼cosθ=
2x
2
−x
2
\longmapsto\large{\tt \cos \theta = \dfrac{- 1}{2}}⟼cosθ=
2
−1
\longmapsto\large{\tt \cos \theta =\cos 120^\circ}⟼cosθ=cos120
∘
\longmapsto\large{\underline{\boxed{\red{\tt \theta = 120^\circ }}}}⟼
θ=120
∘
∴ The Angle Between P & Q is 120°
Answer:
d) 120 degrees
Explanation:
Instead of going for vector algebra, you can solve this question by imagining itself
As magnituude of vectors are equal and by triangle law if they form a triangle then that has to be an equailateral triangle
Angle between sides is 60 degrees so angle between P and Q will be180- 60=120 degrees
OR You can work on the resultant formula
=
Squaring both sides,