Math, asked by chiragmishra25, 1 year ago

ans plz any one out of this

Attachments:

Answers

Answered by Anonymous
7
 \sf{\underline {\Large {QUESTION}}} :

( sin  \theta + 1 + cos  \theta ) ( sin  \theta - 1 + cos  \theta). Sec  \theta cosec  \theta = 2

 \sf{\underline {\Large {PROVING}}} :

L. H. S. = ( sin  \theta + 1 + cos  \theta) ( sin  \theta - 1 + cos  \theta). Sec  \theta cosec  \theta

L. H. S. = [ ( sin  \theta + cos  \theta)² - ( 1 )² ]. Sec  \theta cosec  \theta

 \fbox{Identity \:Used\:, \:a² \:- \:b² \:= \:( \:a\: + \:b\:)\: (\: a\: -\: b\: )}

 \tt{\underline {Here \:, a\:=\:(\:sin theta \:+\: cos theta) \:and \:b\:= \: 1 }}

L. H. S. = ( Sin² \theta + cos² \theta + 2 sin  \theta cos \theta - 1 ) × Sec  \theta cosec  \theta

L. H. S. = ( 1 + 2 sin  \theta cos  \theta - 1 ) ×  \frac{1} {sin theta cos theta}

L. H. S. =  \frac{( 2 sin theta cos theta)} {sin theta cos theta}

L. H. S. = 2

 \sf{\large {\underline {L.\: H. \:S. \:= \:R. \:H.\: S.}}}

Hence, Proved.

Swarup1998: θ doesn't work in latex. Use the code to get it
Anonymous: Use \theta.
Anonymous: @IVII5HA01
Anonymous: Oh.. Tq.
Answered by Grimmjow
14

6. First Problem :

\mathsf{Given : (sin\theta + cos\theta + 1)(sin\theta + cos\theta - 1).({sec}\theta.co{sec}\theta)}

★  We know that : (a + b)(a - b) = a² - b²

\mathsf{:\implies [(sin\theta + cos\theta)^2 - (1)^2].[{sec}\theta.co{sec}\theta]}

\mathsf{:\implies [sin^2\theta + cos^2\theta + 2.sin\theta.cos\theta - 1].[{sec}\theta.co{sec}\theta]}

★  We know that : sin²θ + cos²θ = 1

\mathsf{:\implies [1 + 2.sin\theta.cos\theta - 1].[{sec}\theta.co{sec}\theta]}

\mathsf{:\implies [2.sin\theta.cos\theta].[{sec}\theta.co{sec}\theta]}

\mathsf{:\implies [2.sin\theta.co{sec}\theta].[{cos}\theta.{sec}\theta]}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{{sec}\theta = \dfrac{1}{cos\theta}}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{co{sec}\theta = \dfrac{1}{sin\theta}}}}

\mathsf{:\implies 2\bigg(sin\theta \times \dfrac{1}{sin\theta}\bigg).\bigg(cos\theta \times \dfrac{1}{cos\theta}\bigg)}

\mathsf{:\implies 2}

6. Second Problem :

\mathsf{Given :\;\sqrt{\dfrac{{sec}\theta - 1}{{sec}\theta + 1}} + \sqrt{\dfrac{{sec}\theta - 1}{{sec}\theta + 1}}}

\mathsf{:\implies {\dfrac{\sqrt{{sec}\theta - 1}}{\sqrt{{sec}\theta + 1}}} + \dfrac{\sqrt{{sec}\theta + 1}}{\sqrt{{sec}\theta - 1}}}}

Taking LCM, We get :

\mathsf{:\implies \dfrac{(\sqrt{{sec}\theta - 1})(\sqrt{{sec}\theta - 1}) + (\sqrt{{sec}\theta + 1})(\sqrt{{sec}\theta + 1})}{(\sqrt{{sec}\theta + 1})(\sqrt{{sec}\theta - 1})}}

\mathsf{:\implies \dfrac{\sqrt{({sec}\theta - 1)({{sec}\theta - 1})} + \sqrt{({sec}\theta + 1)({{sec}\theta + 1})} }{\sqrt{({sec}\theta + 1)({{sec}\theta - 1})}}}

\mathsf{:\implies \dfrac{\sqrt{({sec}\theta - 1)^2} + \sqrt{({sec}\theta + 1)^2} }{\sqrt{({{sec}^2\theta - 1})}}}

\mathsf{:\implies \dfrac{{sec}\theta - 1 + {sec}\theta + 1}{\sqrt{({{sec}^2\theta - 1})}}}

\mathsf{:\implies \dfrac{2.{sec}\theta}{\sqrt{({{sec}^2\theta - 1})}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{{sec}^2\theta - tan^2\theta = 1}}}

:\implies \mathsf{{sec}^2\theta - 1 = tan^2\theta}

\mathsf{:\implies \dfrac{2.{sec}\theta}{\sqrt{(tan^2\theta)}}}

\mathsf{:\implies \dfrac{2.{sec}\theta}{tan\theta}}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{tan\theta = sin\theta.{sec}\theta}}}

\mathsf{:\implies \dfrac{2.{sec}\theta}{sin\theta.{sec}\theta}}}

\mathsf{:\implies \dfrac{2}{sin\theta}}}

\mathsf{:\implies 2.co{sec}\theta}


Anonymous: Osm..
Grimmjow: Thank you! (^.^)
Anonymous: :)
Similar questions