Math, asked by Anonymous, 1 year ago

ans plz fast explain​

Attachments:

Answers

Answered by shreya7914
1
mark it as a brainest it will help you
Attachments:

Anonymous: question ke niche × ka shing ha
Answered by abhi569
2

Answer:

Step-by-step explanation:

To Prove : \implies \dfrac{cos^2 \alpha - cos^2 \beta}{cos^2 \alpha.cos^2 \beta}=tan^2 \beta - tan^2 \alpha

Solving left hand side of the given equation :

\implies \dfrac{cos^2 \alpha - cos^2 \beta}{cos^2 \alpha.cos^2 \beta}

Adding and subtracting cos^2 \alpha . cos^2 \beta on the numerator.

\implies \dfrac{cos^2 \alpha - cos^2 \beta+cos^2 \alpha .cos^2 \beta-cos^2 \alpha.cos^2 \beta}{cos^2 \alpha.cos^2 \beta}\\\\\\\implies \dfrac{cos^2 \alpha-cos^2 \alpha.cos^2 \beta - cos^2 \beta+cos^2 \alpha .cos^2 \beta}{cos^2 \alpha.cos^2 \beta}\\\\\\\implies \dfrac{cos^2 \alpha (1 -cos^2 \beta) - cos^2 \beta ( 1 - cos^2\alpha)}{cos^2 \alpha .cos^2\beta}

From the properties of trigonometry,

1 - cos^2 A = sin^2 A

\implies \dfrac{cos^2 \alpha sin^2 \beta - cos^2 \beta sin^2\alpha}{cos^2 \alpha .cos^2\beta}\\\\\\\implies \dfrac{cos^2 \alpha sin^2\beta}{cos^2 \alpha . cos^2 \beta}-\dfrac{cos^2\beta sin^2 \alpha}{cos^2\alpha .cos^2\beta}\\\\\\\implies \dfrac{sin^2 \beta}{cos^2 \beta}-\dfrac{sin^2 \alpha}{cos^2 \alpha }\\\\\\\implies tan^2 \beta - tan^2 \alpha

Hence, proved that  \implies \dfrac{cos^2 \alpha - cos^2 \beta}{cos^2 \alpha.cos^2 \beta}=tan^2 \beta - tan^2 \alpha[/tex]

Similar questions