Ans the above ques plzz
Attachments:
Answers
Answered by
0
Answer:
Tp:Spq=1/2(pq+1)
Step-by-step explanation:
an=a+(n-1)d
pth=1/q
ap=1/q
a+(p-1)d=1/q ....(1)
aq=1/p
a+(q-1)d=1/p ....(2)
(1)-(2)
[a+(p-1)d]-[a+(q-1)d]=1/q-1/p
a+pq-d-[a+qd-d]=1/q-1/p
a+pd-d-a-qd+d=1/q-1/p
a-a-d+d+pd-qd=1/q-1/p
pd-qd=1/q-1/p
d(p-q)=1/q-1/p
d(p-q)=p-q/p-q
d=p-q/p-q(p-q)
d=1/p-q
Solving for a,
1/q=a+(p-1)d
1/q=a+(p-1)1/p-q
1/q=a+p/pq-1/p-q
1/q=a+1/q-1/pq
1/q-1/q=a-1/pq=a-1/pq
a=1/pq
Spq=1/2(pq+1)
Sn=n/2[2a+(n-1)d]
Spq=pq/2[2*1/pq+(pq-1)1/pq]
=pq/2[2/pq+pq/pq-1/pq]
=pq/2[1+pq/pq]
=1/2[pq+1]
Hence proved
Similar questions