Math, asked by sunitapatil00731, 1 year ago

Ans this question fast plzz 6 *

Attachments:

Answers

Answered by Anonymous
4
\huge{\mathfrak{Heyaa\:Mate}}

_____________________________________

\huge\sf{Answer}

{\red{\boxed{{y}^{2} - 2y - 7 = 0}}}

1) \: { \alpha }^{2} + { \beta }^{2} \\ = > \alpha + \beta = \frac{ - b}{a} \\ = > a = 1 \\ = > b = - 2 \\ = > c = - 7 \\ = > \alpha + \beta = \frac{ - ( - 2)}{1} \\ = > \alpha + \beta = 2 \\ = > \alpha \beta = \frac{c}{a} \\ = > \alpha \beta = \frac{ - 7}{1} \\ = > \alpha \beta = - 7

{\red {\boxed{{( \alpha + \beta) }^{2} = { \alpha }^{2} + { \beta }^{2} + 2 \alpha \beta}}}

putting \: the \: value \: of \: ( \alpha \beta ) \: \\ ( \alpha + \beta ) \: in \: the \: above \: formulae

 = > {2}^{2} = { \alpha }^{2} + { \beta }^{2} + 2( - 7) \\ = > 4 = { \alpha }^{2} + { \beta }^{2} - 14 \\ = > 4 + 14 = { \alpha }^{2} + { \beta }^{2}

{\green{\boxed{ { \alpha }^{2} + { \beta }^{2} = 18}}}

2) { \alpha }^{3} + { \beta }^{3}

{\red{\boxed{ {( \alpha + \beta) }^{3} = { \alpha }^{3} + { \beta }^{3} + 3 \alpha \beta (\alpha + \beta)}}}

putting \: the \: value \: of \: ( \alpha \beta ) \: \\ ( \alpha + \beta )in \: above \: formulae

 = > {2}^{3} = { \alpha }^{3} + { \beta }^{3} + 3( - 7)(2) \\ = > 8 = { \alpha }^{3} + { \beta }^{3} - 42 \\ = > 8 + 42 = { \alpha }^{3} + { \beta }^{3}

{\green {\boxed{50 = { \alpha }^{3} + { \beta }^{ 3}}}}

Still having any doubt..... ask me ☺ ☺

_____________________________________

\huge{\mathfrak{Thanks}}

Anonymous: mark it as brainliest ☺
Answered by aqsa46
0

here is your answer i hope it helps you

Similar questions