Math, asked by sweetybee, 10 months ago

ans this question guys pls help me to solve this problem​

Attachments:

Answers

Answered by Rajshuklakld
4

The above question can be solved by two methods

Method 1):-Solving using L'Hopital rule

Diffrentiate the given term with respect to.x

 \frac{dy}{dx} =  \frac{2cos2x}{0 -  \frac{1}{2} {(4 - x)}^{  \frac{ - 1}{2} }  \times ( - 1)   }   \\ now \: put \: x = 0 \\ required \: limit =  \frac{2cos0}{ \frac{ - 1}{2} { (\frac{1}{4}) }^{ \frac{1}{2}  }  \times  - 1}  = 8 \\ this \: will \: be \: the \: limit \\ \:

Method2):-Solving using the formula of limits

divide the numerator by 2x and then multiply it by 2x,,so that the value doesn't effected

 =  >  \frac{ \frac{sin2x}{2x}  \times 2x}{2 -  \sqrt{4 - x} }  \\ now \: we \: know \: that \:  \frac{sinx}{x }  = 1 \\ so \:  \frac{sin2x}{2x}  = 1 \\  =  >  \frac{2x \times 1}{2 -  \sqrt{4 - x} }  \\ multiply \: numerator \: and \: denominator \: by \\ 2  +  \sqrt{4 - x} \\  =  >  \frac{2x(2 +  \sqrt{4 - x}) }{(2 -  \sqrt{4 - x})(2 +  \sqrt{4 - x)}  } \\  =  >    \frac{2x(2 +  \sqrt{4 - x} )}{4 - 4 + x}   =  \frac{2(2 +  \sqrt{4 - x}) }{1}  \\ now \: put \: x = 0 \\ on \: putting \: we \: get \\ required \: limit =  \frac{2(2 + 2)}{1}  = 2 \times 4 = 8

{hope it helps you dude}

Similar questions