ans this sum..............
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given:
ABC is a Δ
AD ⊥ CB
DB = 3CD
To prove:
2AB² = 2AC² + BC²
Poof:
AB² = AD² + DB²
AD² = AB² - DB² ........(i)
AC² = AD² + CD²
⇒AD² = AC² - CD².......................(ii)
Comparing (i) and (ii)
AB² - DB² = AC² - CD²
AB² - (3CD)² = AC² - CD² ........(iii)
BC= CD+DB
BC= CD+3CD
BC=4CD
CD=BC/4........(iv)
Substituting (iv) in (iii)
AB² - (3BC/4)² = AC² - (BC/4)²
⇒AB² - 9BC²/16 = AC² - BC²/16
⇒(16AB² - 9BC²)/16 = (16AC² - BC²)/16
16 will get cancel
we will get,
16AB² - 9BC² = 16AC² - BC²
⇒16AB² - 16AC² = -BC² + 9BC²
⇒ 16AB² = 16AC² + 8BC²
⇒ 8 × 2AB² = 8(2AC² + BC²)
⇒ 2AB² = 2AC² + BC²
Answered by
0
Answer:
Please mark me as brainliest
Similar questions