Math, asked by guchiiitu, 4 months ago

Answer 10 please
Urgent hai ​

Attachments:

Answers

Answered by Anonymous
13

Given :-

\tt\longrightarrow{z_1 = 2 - i}

\tt\longrightarrow{z_2 = 1 + i}

Solution :-

\rm\implies{\bigg| \dfrac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \bigg|}

Putting the values

\rm\implies{\bigg| \dfrac{(2 - i) + (1 + i) + 1}{(2 - i) - (1 + i) + 1} \bigg|}

\rm\implies{\bigg| \dfrac{2 - i + 1 + i + 1}{2 - i - 1 - i + 1} \bigg|}

\rm\implies{\bigg| \dfrac{4}{2 - 2i} \bigg|}

\rm\implies{\bigg| \dfrac{2}{1 - i} \bigg|}

Rationalising the denominator

\rm\implies{\bigg| \dfrac{2}{1 - i} \times \dfrac{1 + i}{1 + i} \bigg|}

\rm\implies{\bigg| \dfrac{2(1 + i)}{(1 - i)(1 + i)} \bigg|}

\rm\implies{\bigg| \dfrac{2 + 2i}{1 - i^2} \bigg|}

\: \: \: \: \: \: \: \: \star\bf\: \: \: {i^2 = -1}

\rm\implies{\bigg| \dfrac{2 + 2i}{1 + 1} \bigg|}

\rm\implies{\bigg| \dfrac{2 + 2i}{2} \bigg|}

\rm\implies{| 1 + 1i |}

Modulus

\: \: \: \: \: \: \: \: \star\bf\: \: \: {| x + iy | = \sqrt{x^2 + y^2}}

\rm\implies{\sqrt{(1)^2 + (1)^2}}

\rm\implies{\sqrt{1 + 1}}

\rm\implies{\sqrt{2}}

Hence,

  • The required answer is \bf{\sqrt{2}}

Anonymous: Mind blowing ✌
Anonymous: Thank uh
Anonymous: Amazing
Anonymous: Really Admirable !
Anonymous: ReaIIy Admirable !
Anonymous: ReaIIy Admirable ¡
Anonymous: ReaIly Admirable !
Anonymous: ReaIIy AdmirabIe !
Similar questions