answer...............
Attachments:
Answers
Answered by
6
||✪✪ QUESTION ✪✪||
Solve The Equation sinA + sin3A + sin5A = 0
|| ✰✰ ANSWER ✰✰ ||
→ sinA + sin3A + sin5A = 0
→ (sinA + sin5A) + sin3A = 0
Using sinC + sinD = 2 * sin(C+D)/2 * cos(C-D)/2 ,
→ [ 2 * sin(A+5A)/2 * cos(A - 5A)/2 ] + sin3A = 0
→ [ 2 * sin(6A)/2 * cos(-4A)/2 ] + sin3A = 0
→ 2 * sin3A * cos(-2A) + sin3A = 0
Now, using cos(-A) = cosA ,
→ 2 * sin3A * cos2A + sin3A = 0
Taking sin3A common now,
→ sin3A( 2cos2A + 1) = 0
Now, putting both Equal to Zero now, we get,
→ sin3A = 0
→ 3A = nπ
→ A = (nπ)/3 (Ans.)
Or,
→ (2cos2A + 1) = 0
→ 2cos2A = (-1)
→ cos2A = (-1/2)
→ 2A = 2nπ ± (-π)/3
→ A = [ 2nπ ± (-π)/3 ] /2
→ A = nπ ± (-π)/6
→ A = nπ ∓ (π/6) (Ans.)
Answered by
62
Step-by-step explanation:
Please check the attached picture
Attachments:
Similar questions