answer...............
Answers
Gɪᴠᴇɴ :-
- Coordinates of A & B = (-14,-10) & (6,-2)
- P , Q & R divides Line segment AB in 4 Equal Parts.
Tᴏ Fɪɴᴅ :-
- Coordinates or P , Q & R ?
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- Coordinates of Mid - Points of (x1,x2) & (y1,y2) is :- (x1+x2)/2 & (y1+y2)/2
Sᴏʟᴜᴛɪᴏɴ :-
A(-14,10)--------P(a,b)--------Q(c,d)-------R(e,f)---------B(6,-2)
As we can see Point Q is in The Middle of AB .
So,
Coordinates of Q :-
→ c = [(-14) + 6]/2 = (-8)/2 = (-4)
→ d = [(-10) + (-2)]/2 = (-12)/2 = (-6) .
_____________________
Now we have :-
A(-14,-10)--------P(a,b)--------Q(-4,-6)
Here, As we can see P is in The Middle of AQ,
So, Coordinates of P :-
→ a = [(-14) + (-4)]/2 = (-18)/2 = (-9)
→ b = [-10 + (-6)]/2 = (-16)/2 = (-8) .
_____________________
Now we have :-
Q(-4,-6)--------R(e,f)--------B(6,-2)
Here, As we can see R is in The Middle of QB,
So, Coordinates of R :-
→ e = [(-4) + 6]/2 = 2/2 = 1.
→ f = [(-6) + (-2)]/2 = (-8)/2 = (-4).
_____________________
Hence, we can conclude That, The Required Coordinates which Divide Line Segment AB in 4 Equal Parts are :- P(-9,-8) , Q(-4,-6) & R(1,-4) . (Ans.)
___________________________
- Line segment A(-14,-10),B(6,-2)
- Coordinates of P(x,y),Q(x,y),R(x,y)
- Let the P,Q,R be thr points on line segment AB
- Therefore AP = PQ = QR = RB.
- P divides line AB in the ratio 1:3
_____________________________________
- Q divides line AB in the ratio 2:2 Q(x,y).
_______________________________________
- P divides line AB in the ratio 3:1.