English, asked by captverma, 4 months ago

answer 1st and 2nd question fast...
no spam..
otherwise 10 answers reported...​

Attachments:

Answers

Answered by StormEyes
11

\sf \Large Solution!!

\sf \to \dfrac{x^{a+b}\times x^{b+c}\times x^{c+a}}{(x^{a}\times x^{b}\times x^{c})^{2}}=1

\sf \to \dfrac{x^{a+b+b+c+c+a}}{(x^{a}\times x^{b}\times x^{c})\times (x^{a}\times x^{b}\times x^{c})}=1

\sf \to \dfrac{x^{2a+2b+2c}}{x^{a+b+c+a+b+c}}=1

\sf \to \dfrac{\cancel{x^{2a+2b+2c}}}{\cancel{x^{2a+2b+2c}}}=1

\sf \to 1=1

LHS = RHS

Hence, proved.

———————————————————

\sf \to \dfrac{5(1-x)+3(1+x)}{1-2x}=8

\sf \to 5(1-x)+3(1+x)=8(1-2x)

\sf \to 5-5x+3+3x=8-16x

\sf \to 8-2x=8-16x

\sf \to 16x-2x=8-8

\sf \to 14x=0

\sf \to x=0

Answered by Anonymous
1

Answer:

 \huge→(xa×xb×xc)2xa+b×xb+c×xc+a=1</p><p></p><p> \huge\sf \to \dfrac{x^{a+b+b+c+c+a}}{(x^{a}\times x^{b}\times x^{c})\times (x^{a}\times x^{b}\times x^{c})}=1→(xa×xb×xc)×(xa×xb×xc)xa+b+b+c+c+a=1</p><p></p><p> \huge\sf \to \dfrac{x^{2a+2b+2c}}{x^{a+b+c+a+b+c}}=1→xa+b+c+a+b+cx2a+2b+2c=1</p><p></p><p>=1</p><p></p><p> \huge\sf \to \dfrac{\cancel{x^{2a+2b+2c}}}{\cancel{x^{2a+2b+2c}}}=1→x2a+2b+2cx2a+2b+2c=1</p><p></p><p>\sf \to 1=1→1=1</p><p></p><p>LHS = RHS</p><p></p><p>Hence, proved.</p><p></p><p>

Hi Nandini

Reply Mee...

Similar questions