Math, asked by Leela2004, 9 months ago

Answer.................​

Attachments:

Answers

Answered by saounksh
2

ANSWER

  • The least positive integral value of K is 6.

EXPLAINATION

GIVEN

  • Triangle ABC such that A = \frac{π}{4}

  • tan(B)tan(C) = K.....(1)

TO FIND

  • Least positive integral value of K.

CALCULATION

Now,

 A+B+C = π

 \frac{π}{4} +B+C = π

 B+C = π - \frac{π}{4}

 B+C = \frac{3π}{4}

 tan(B+C) = tan(\frac{3π}{4} )

 \frac{tan(B)+tan(C)}{1 -  tan(B)tan(C)} = -1

 tan(B)+tan(C) = -1 + tan(B)tan(C)

 tan(B)+tan(C) = (K-1).....(2)

We know that tan(B) and tan(C) are roots of

 x² -[tan(B) + tan(C)]x + tan(B)tan(C) = 0

Using (1) and (2)

 x² -[K-1]x + K = 0

Since tan(B) and tan(C) are real,

Discriminant ≥ 0

⇒ (K-1)² - 4K ≥ 0

⇒ K² -2K + 1 - 4K ≥ 0

⇒ K² -6K + 1≥ 0

⇒ K² -2K.3 +3²+ 1-3²≥ 0

⇒ (K -3)²- (2√2)²≥ 0

⇒ [K-3+2√2][K -3-2√2)1] ≥ 0

⇒ [K-(3-2√2)][K -(3+2√2)1] ≥ 0

⇒ K ≤ (3-2√2)\:\:or\:\:K ≥ (3+2√2)

Therefore least positive integral value of K

= [3+ 2√2] + 1, [.] is greatest integer function.

= 5 + 1

= 6

Similar questions