Physics, asked by Anonymous, 8 months ago

answer....................​

Attachments:

Answers

Answered by BrainlyTornado
8

QUESTION:

If four identical particles of mass m are kept at the four vertices of a sqaure of side length a the gravitational force of attraction on anyone of the particle is.

ANSWER:

\sf F_{net} = \dfrac{Gm^2}{a^2} \left({ \sqrt{2} }+ \dfrac{1}{2} \right)

GIVEN:

  • Four identical particles of mass m are kept at the four vertices of a sqaure.

  • Side length of the square is a.

TO FIND:

  • The gravitational force of attraction on anyone of the particle.

EXPLANATION:

DIAGRAM:

\setlength{\unitlength}{1 cm}\begin{picture}(0,0) \linethickness{0.2mm}\qbezier(0,0)(0,0)(2,0)\qbezier(2,0)(2,0)(2,2)\qbezier(2,2)(2,2)(0,2)\qbezier(0,2)(0,2)(0,0)\put(0,0){\vector(1,0){2}} \put(0,0){\vector(0,1){2}}\put(0,0){\vector(1,1){1}}\put(0,0){\vector(1,1){1}}\put(0,0){\vector(1,1){1}}\put(0,0){\vector(1,1){1}}\put(0,0){\vector(1,1){1}}\put(0,0){\vector(1,1){0.6}}\put( - 0.2, - 0.3){$\bf C$}\put( - 0.2, 2.1){$\bf B$}\put( 2, 2.1){$\bf A$}\put( 2,  - 0.3){$\bf D$}\put(1.1,0.8){$\bf  F_{AC}$}\put(0.58,0.3){$\bf  F_R$}\put(- 0.75,0.9){$\bf  F_{CB}$}\put(0.58, - 0.3){$\bf  F_{CD}$}\end{picture}

Let we calculate the force on the particle C.

 \boxed{ \bold{ \large{ \gray{F =\dfrac{Gmm}{r^2}}}}}

  \sf F_{CD} = F_{CB} =  \dfrac{Gm^2}{a^2} = F

\sf We  \ want  \ to \ \ find \ the \ resultant \ of  \ F_{CD}  \ and \  F_{CB}

 \sf F_{R} = \sqrt{(F_{CD})^2 + (F_{CB})^2 + 2F_{CD}F_{CB}Cos\ \theta}

 \sf F_{R} = \sqrt{F^2 + F^2 + 2F(F)Cos\ 90^{ \circ}  }

As the each angles of the square is 90°.

 \sf F_{R} = \sqrt{2F^2 }

 \sf F_{R} = \sqrt{2}  \ F

\sf F_{net} = F_R + F_{AC}

 \sf Distance\ between\ A\ and\ C = \sqrt{a^2 + a^2}

 \sf Distance\ between\ A\ and\ C = \sqrt{2a^2}

 \sf Distance\ between\ A\ and\ C = \sqrt{2} \ a

 \sf F_{AC} = \dfrac{Gm^2}{(\sqrt{2}a)^2}

 \sf F_{AC} = \dfrac{Gm^2}{2a^2}

 \sf F_{R} =  \dfrac{\sqrt{2}  \ Gm^2}{a^2}

\sf F_{net} = \dfrac{\sqrt{2}  \ Gm^2}{a^2} + \dfrac{Gm^2}{2a^2}

\sf Take \ \dfrac{\ Gm^2}{a^2}\ as\ common.

\sf F_{net} = \dfrac{Gm^2}{a^2} \left({ \sqrt{2} }+ \dfrac{1}{2} \right)

FORCE ACTING ON ANY ONE OF THE BODY WILL EQUAL TO THE NET FORCE.

\sf Net \  force = \dfrac{Gm^2}{a^2} \left({ \sqrt{2} }+ \dfrac{1}{2} \right)

Answered by Anonymous
12
QUESTION:

If four identical particles of mass m are kept at the four vertices of a sqaure of side length a the gravitational force of attraction on anyone of the particle is.

ANSWER:

\sf F_{net} = \dfrac{Gm^2}{a^2} \left({ \sqrt{2} }+ \dfrac{1}{2} \right)Fnet​=a2Gm2​(2​+21​)

GIVEN:

Four identical particles of mass m are kept at the four vertices of a sqaure.

Side length of the square is a.

TO FIND:

The gravitational force of attraction on anyone of the particle.

EXPLANATION:

DIAGRAM:


Let we calculate the force on the particle C.
\boxed{ \bold{ \large{ \gray{F =\dfrac{Gmm}{r^2}}}}}F=r2Gmm​​
\sf F_{CD} = F_{CB} = \dfrac{Gm^2}{a^2} = FFCD​=FCB​=a2Gm2​=F
\sf We \ want \ to \ \ find \ the \ resultant \ of \ F_{CD} \ and \ F_{CB}We want to  find the resultant of FCD​ and FCB​
\sf F_{R} = \sqrt{(F_{CD})^2 + (F_{CB})^2 + 2F_{CD}F_{CB}Cos\ \theta}FR​=(FCD​)2+(FCB​)2+2FCD​FCB​Cos θ​
\sf F_{R} = \sqrt{F^2 + F^2 + 2F(F)Cos\ 90^{ \circ} }FR​=F2+F2+2F(F)Cos 90∘​
As the each angles of the square is 90°.
\sf F_{R} = \sqrt{2F^2 }FR​=2F2​
\sf F_{R} = \sqrt{2} \ FFR​=2​ F
\sf F_{net} = F_R + F_{AC}Fnet​=FR​+FAC​
\sf Distance\ between\ A\ and\ C = \sqrt{a^2 + a^2}Distance between A and C=a2+a2​
\sf Distance\ between\ A\ and\ C = \sqrt{2a^2}Distance between A and C=2a2​
\sf Distance\ between\ A\ and\ C = \sqrt{2} \ aDistance between A and C=2​ a
\sf F_{AC} = \dfrac{Gm^2}{(\sqrt{2}a)^2}FAC​=(2​a)2Gm2​
\sf F_{AC} = \dfrac{Gm^2}{2a^2}FAC​=2a2Gm2​
\sf F_{R} = \dfrac{\sqrt{2} \ Gm^2}{a^2}FR​=a22​ 
Similar questions