Math, asked by smaran1137, 7 months ago

answer 3rd question in that​

Attachments:

Answers

Answered by babitadevi1306
1

 \red{answer}

Given: The term √1-sin²100 sec 100°

To find: The value of the given term?

Solution:

  • Now the term provided istrigonometric, which is :

√(1-sin²100°) ×sec 100°

  • Now we known sin^2x+cos^2x=1
  • So applying it, we get:

√(1-sin²100°) x sec 100°= √(cos²100°) x sec 100°

=cos

100° x sec 100°

  • Now we know that cos X × sec x=1

Cos 100°x sec 100°=1

Answer:

So the value of √1-sin²100 sec 100° is 1.

 \red{hope \: its \: help \: you}

 \red{mark \: as \: brainlist}

Answered by BrainlyPopularman
38

(3.)

TO FIND :

• Value of   \bf \sqrt{1 -  { \sin}^{2}({100}^{ \circ})} . \sec( {100}^{ \circ} )  = ?

SOLUTION :

• Let –

 \\ \bf \implies y = \sqrt{1 -  { \sin}^{2}({100}^{ \circ})} . \sec( {100}^{ \circ} ) \\

• Using identity –

 \\ \bf \implies  \cos( \theta) = \sqrt{1 -  { \sin}^{2}( \theta)}\\

 \\ \bf \implies y ={ \cos}({100}^{ \circ}). \sec( {100}^{ \circ} ) \\

• Using identity –

 \\ \bf \implies \sec( \theta) =  \dfrac{1}{ \cos( \theta) }  \\

 \\ \bf \implies y ={ \cos}({100}^{ \circ}). \dfrac{1}{ \cos( {100}^{ \circ}) }\\

 \\ \large \implies{ \boxed{ \bf y =1}}\\

 \\ \rule{220}{2}\\

(4.)

GIVEN :

 \\ \bf \implies \sec( \theta) +  \tan( \theta) =P \\

TO FIND :

 \\ \bf \implies \sec( \theta)  -  \tan( \theta) =? \\

SOLUTION :

• We know that –

 \\ \bf \implies \sec^{2} ( \theta)  -  \tan^{2} ( \theta) =1 \\

• Using identity –

 \\ \bf \implies a^{2}  - b^{2} =(a + b)(a - b) \\

 \\ \bf \implies  \{\sec( \theta) +  \tan( \theta) \} \{ \sec( \theta) -  \tan( \theta)\} =1 \\

 \\ \bf \implies  P\{ \sec( \theta) -  \tan( \theta)\} =1 \\

 \\ \large\implies{ \boxed{ \bf \sec( \theta) -  \tan( \theta) = \dfrac{1}{P}}} \\

Similar questions