Math, asked by sourabhggrx, 1 year ago

.......... Answer.........

Attachments:

Answers

Answered by dootindraj1981pc4hvv
0
muahhhhhhhhhhhhh **********************
Attachments:
Answered by InesWalston
0

Solution-

In quadrilateral ABCD, sum of measurement of all interior angle must be equal to 360°

\Rightarrow \angle A +\angle B+\angle C+\angle D=360

And in triangle AOD, sum of measurement of all the angles must be equal to 180°

\Rightarrow \angle OAD +\angle ODA+\angle AOD=180

\Rightarrow \angle OAD +\angle ODA=180-\angle AOD

And,

\angle A=2\times \angle OAD\ and\ \angle D=2\times \angle ODA

As AO and DO are the angle bisectors.

Substituting the values,

\Rightarrow \angle A +\angle B+\angle C+\angle D=360

\Rightarrow (2\times \angle OAD)+\angle B+\angle C+(2\times \angle ODA)=360

\Rightarrow \angle B+\angle C+2(\angle OAD+\angle ODA)=360

\Rightarrow \angle B+\angle C+2(180-\angle AOD)=360

\Rightarrow \angle B+\angle C+360-(2\times \angle AOD)=360

\Rightarrow \angle B+\angle C-2\angle AOD=0

\Rightarrow \angle B+\angle C=2\angle AOD\ \ (proved)

Similar questions