Math, asked by venkatmahesh06, 8 months ago

answer all....................​

Attachments:

Answers

Answered by Anonymous
1

 \bf \star 1)\: the \:  \: degree \:  \: of \:  \: constant \:  \: polynomial \:  \: is \:  \:  \underline{zero \: (0) \: } \\  \\ \bf \star2) \:number \:  \: of \:  \: zeroes \:  \: the \:  \:  \: polynomial \: represented \:  \: by \:  \: graph \:  \: is \:  \underline {4 \:  \: because \:  \: 4 \:  \: points \:  \: where \:  \: lies \:  \: on \:  \: x \: axis \:  \: }

\bf \star 3)\:(x =  \sqrt{3} )(x =  -  \sqrt{3} ) \\  \bf \: (x -  \sqrt{3} )(x +  \sqrt{3} ) =  {x}^{2}  + x \sqrt{3}  - x \sqrt{3}  - 3 =  {x}^{2}  - 3

\bf \star 4)\:a = 1 \:  \:  \:   \:  \:  \: \: b = 0 \:  \:  \:  \:  \:  \:  \: c =  - 3 \\  \bf \:  \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 0}{1}  = 0 \\  \bf \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 3}{1}  =  - 3

\bf \star 5)\:a = 1 \:  \:  \:  \:  \:  \:  \: b = 4 \:  \:  \:  \:  \:  \:  \:  \: c = 1 \:  \:  \:  \:  \:  \:  \:  \:  \: d =  - 6 \\  \bf \:  \alpha  \beta  \gamma  =  \frac{ - d}{a}  =  \frac{ - 6}{1}  =  - 6

\bf \star \:6)f(x) = 3x - 2 \\  \bf \: 3x - 2 = 0 \\  \bf \: x =  \frac{2}{3}

\bf \star \:7)ax + b \:  \: represents \:  \:  \:  \underline{linear} \:  \: polynomial \\

\bf \star \:8) {x}^{15}  - 1 =  {0}^{15}  - 1 =  - 1

\bf \star \:9)both \:  \: are \:  \: negative \:  \: so \:  \: it \:  \: is \:  \: in \:  \underline{third \:  \: quadrant} \:

\bf \star \:10)2x + 6 = 18 \\  \bf \: 2x = 12 \\  \bf \: x = 6

\bf \star \:11) \: the \:  \: equation \:  \: x - 4y = 5 \:  \: has \:  \underline{infinite} \:  \: solution

\bf \star \:12)infinite \\  \\\bf \star \:13)no \:  \: solution \\  \\\bf \star \:14)coincident \\  \\   \bf \star \:15)standard \:  \: equation \:  \: of \: linear \:  \: equation \:  \: in \:  \: two \:  \: variable \:  \: is \:  \underline{ {ax}^{2}  + bx + c = 0}

\bf \star \:16) \frac{5}{1}  +  \frac{3}{y}  = 6 \\  \bf \:  \frac{5y + 3}{y}  = 6 \\  \bf \: 6y - 5y = 3 \\  \bf \: y = 3

\bf \star \:17)tsa \: of \: cone \:  \: is \:  \underline{\pi \: rl + \pi {r}^{2} }

\bf \star \:18)slant \: height \\  \\ \bf \star \:19)cone \\  \\ \bf \star \:20)tsa \:  \: of \:  \: hemisphere \:  \: = 3\pi {r}^{2}  = 3 \times  \frac{22}{7}  \times 3.5 \times 3.5 = 115.5 \: cm

Answered by Anonymous
3

\blue{\bold{\underline{\underline{Answer1:-}}}}

  • The constant term of a polynomial is the term of degree 0; it is the term in which the variable does not appear.

\blue{\bold{\underline{\underline{Answer2:-}}}}

  • the number of zeroes is four in the graph
Similar questions