Answer all and no scam
Q1. (a) Find the complement angle of 70°.
(b) Find the supplement angle of 12°.
Q3. Two complementary angles are in the ratio 4 : 5. Find the angles.
Q4. Find x if l║m
Q7. ABC is right-angled at C. If AC = 5 cm and BC = 12 cm , find the length of AB.
Answers
Step-by-step explanation:
1.aComplement of 70 is 90-70= 20 degrees.
b. the supplement angle of 12° is 192
3.Given that two coming complementary angles are in ratio 4:5. ... Now, angle 1 = 4 × 10 = 40°. Second angle = 5 × 10 = 50°.
4.Here l∥m and p is transversal
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)3x+20o+5x−8o=180o
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)3x+20o+5x−8o=180o8x+12o=180o
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)3x+20o+5x−8o=180o8x+12o=180o8x=180o−12o
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)3x+20o+5x−8o=180o8x+12o=180o8x=180o−12o8x=168o
alTherefore (3x+20)o+(5x−8)o=180o (sum of the interior angles on the same side of a transversal)3x+20o+5x−8o=180o8x+12o=180o8x=180o−12o8x=168ox=8168o=21o
7.Applying Pythagoras’ theorem in △ABC,△ABC, we get
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122⇒AB2=25+144⇒AB2=25+144
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122⇒AB2=25+144⇒AB2=25+144⇒AB2=169⇒AB2=169
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122⇒AB2=25+144⇒AB2=25+144⇒AB2=169⇒AB2=169⇒AB=169−−−√⇒AB=169
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122⇒AB2=25+144⇒AB2=25+144⇒AB2=169⇒AB2=169⇒AB=169−−−√⇒AB=169⇒AB=13⇒AB=13 cm
Applying Pythagoras’ theorem in △ABC,△ABC, we getAB2=AC2+BC2AB2=AC2+BC2⇒AB2=52+122⇒AB2=52+122⇒AB2=25+144⇒AB2=25+144⇒AB2=169⇒AB2=169⇒AB=169−−−√⇒AB=169⇒AB=13⇒AB=13 cm∴∴ Length of AB is 13 cm.