Math, asked by abhay142006, 10 months ago

answer all of 2nd

all four​

Attachments:

Answers

Answered by nagarishithakalluri
0

Answer:

i hope it helps you

stay home stay safe

Attachments:
Answered by davisshikhar
1
  • 2nd

Rationalising the denominator

 \sqrt{2}  +  \sqrt{3}  \div 3 \sqrt{2}  - 2 \sqrt{3}

 \sqrt{2}  +  \sqrt{3}  \times 3 \sqrt{2}  + 2 \sqrt{3}  \div 3 (\sqrt{2}  - 2 \sqrt{3} ) \times 3 \sqrt{2}  + 2 \sqrt{3}

( \sqrt{2} +  \sqrt{3}  )(3 \sqrt{2}  + 2 \sqrt{3} ) \div  \\ 3 (\sqrt{2} ) {}^{2}  - (2 \sqrt{3} ) {}^{2}

since \\ (x - y)(x + y) = x {}^{2}  - y {}^{2}

 \sqrt{2} (3 \sqrt{2}  + 2 \sqrt{3} ) +  \sqrt{3} (3 \sqrt{2}  + 2 \sqrt{3} ) \\  \div  \\ 9(2) - 4(3)

3(2) + 2 \sqrt{6}  + 3 \sqrt{6}  + 2(3) \\  \div  \\ 6

6 + 2 \sqrt{6}  + 3 \sqrt{6}  + 6 \\  \div   \\ 6

12 + 5 \sqrt{6}   \\  \div  \\ 6

12 \div 6 + 5 \sqrt{6}  \div 6 = a - b \sqrt{6}

2 + 5 \sqrt{6}  = a - b \sqrt{6}

comparing both sides we get

a = 2 \\ b =  - 5  \div 6 = 0.833

  • 4th

rationalise both terms on left hand side

(7 +  \sqrt{5}  \div 7 -  \sqrt{5}  \times 7 +  \sqrt{5}  \div 7 +  \sqrt{5} )

(7 +  \sqrt{5} ) {}^{2}  \\ since \\ (x + y)(x + y) = (x + y) {}^{2}  \\ also \\ (7 -  \sqrt{5} )(7 +  \sqrt{5})

49 + 5 + 14 \sqrt{5}  \div 7 {}^{2} -  \sqrt{5 {}^{2} }   \\ since \\ (x + y) {}^{2}  = x {}^{2}  + y {}^{2}  + 2xy \\ (x + y)(x - y) = x {}^{2}  - y {}^{2}

54 + 14 \sqrt{5}  \\  \div  \\ 49 - 5

54 + 14 \sqrt{5}  \\  \div  \\ 44

54 \div 44 + 14 \sqrt{5}  \div 44

Solving 2nd term

 - (7 -  \sqrt{5}  \div 7 +  \sqrt{5} )

Taking only bracket

7 -  \sqrt{5}   \times 7 -  \sqrt{5}  \\  \div  \\ 7 +  \sqrt{5}  \times 7 -  \sqrt{5}

(7 -  \sqrt{5} ) {}^{2}   \\  \div  \\ 7 {}^{2}  -  {(\sqrt{5} ) }^{2}

(x - y) {}^{2}  = x {}^{2}  + y {}^{2}  - 2xy

49 + 5 - 14 \sqrt{5}  \\  \div  \\ 49 - 5

54 - 14 \sqrt{5}  \\  \div  \\ 44

The new euation will be as follows

54 + 14 \sqrt{5}   - (54 - 14 \sqrt{5} ) \\  \div 44 \:  \:  \:  \:  \:  \:  \div (44)

54 + 14 \sqrt{5}  - (54 - 14 \sqrt{5} ) \\  \div  \\ 44

54 + 14 \sqrt{5}  - 54 + 14 \sqrt{5}   \\  \div  \\ 44

2(14 \sqrt{5} ) \div 44

28 \sqrt{5}  \\  \div  \\ 44

  \frac{7 \sqrt{5} }{11}

this equation was equal to

a +  \frac{7b \sqrt{5} }{11}

comparing we get

a=0

b = 1

HOPE IT HELPS

Similar questions