Math, asked by reshma903375, 3 months ago

Answer all questions in methods ​

Attachments:

Answers

Answered by MasterDhruva
19

Solution (1) :-

Cost price of the watch :-

{\tt \leadsto \dfrac{100}{(100 - 10)} \times 1440}

{\tt \leadsto \cancel \dfrac{100}{90} \times 1440 = \dfrac{10}{9} \times 1440}

{\tt \leadsto \dfrac{10 \times 1440}{9} = \dfrac{14400}{9}}

{\tt \leadsto \cancel \dfrac{14400}{9} = 1600}

Now,

Selling price if 80% of gain :-

{\tt \leadsto \dfrac{(100 + 80)}{100} \times 1600}

{\tt \leadsto \dfrac{180}{\cancel{100}} \times \cancel{1600} = \dfrac{180}{1} \times 16}

{\tt \leadsto \dfrac{180 \times 16}{1} = \dfrac{2800}{1}}

{\tt \leadsto \cancel \dfrac{2800}{1} = \orange{\boxed{\tt Rs \: \: 2800}}}

\:

Solution (2) :-

Cost price of bicycle :-

{\tt \leadsto \dfrac{100}{(100 - 20)} \times 1500}

{\tt \leadsto \cancel \dfrac{100}{80} \times 1500 = \dfrac{5}{4} \times 1500}

{\tt \leadsto \dfrac{5 \times 1500}{4} = \dfrac{7500}{4}}

{\tt \leadsto \cancel \dfrac{7500}{4} = 1875}

Now,

Gain percent if sold for 3000 :-

{\tt \leadsto \dfrac{(3000 - 1875)}{1875} \times 100 = \dfrac{1125}{1875} \times 100}

{\tt \leadsto \dfrac{1125}{\cancel{1875}} \times \cancel{100} = \dfrac{1125}{75} \times 4}

{\tt \leadsto \cancel \dfrac{1125}{75} \times 4 = \dfrac{15}{1} \times 4}

{\tt \leadsto \dfrac{15 \times 4}{1} = \dfrac{60}{1}}

{\tt \leadsto \cancel \dfrac{60}{1} = \orange{\boxed{\tt Rs \: \: 60}}}

\:

Solution (3) :-

Selling price of first T.V :-

{\tt \leadsto \dfrac{(100 + 80)}{100} \times 2800}

{\tt \leadsto \cancel \dfrac{180}{100} \times 2800 = \dfrac{9}{2} \times 2800}

{\tt \leadsto \dfrac{9 \times 2800}{2} = \dfrac{25200}{2}}

{\tt \leadsto \cancel \dfrac{25200}{2} = 12600}

Selling price of second T.V :-

{\tt \leadsto \dfrac{(100 - 20)}{100} \times 2800}

{\tt \leadsto \cancel \dfrac{80}{100} \times 2800 = \dfrac{4}{5} \times 2800}

{\tt \leadsto \dfrac{4 \times 2800}{5} = \dfrac{11200}{5}}

{\tt \leadsto \cancel \dfrac{11200}{2} = 2240}

Total cost price :-

{\tt \leadsto 2800 + 2800}

{\tt \leadsto 5600}

Total selling price :-

{\tt \leadsto 12600 + 2240}

{\tt \leadsto 14840}

Now,

Overall profit percentage :-

{\tt \leadsto \dfrac{14840 - 5600}{5600} \times 100}

{\tt \leadsto \dfrac{9240}{\cancel{5600}} \times \cancel{100} = \dfrac{9240}{56}}

{\tt \leadsto \cancel \dfrac{9240}{56} = \orange{\boxed{\tt 165 \bf\%}}}

\:

Solution (4) :-

Selling price of an article :-

{\tt \leadsto \dfrac{(100 + 15)}{100} \times 1500}

{\tt \leadsto \cancel \dfrac{115}{100} \times 1500 = \dfrac{23}{20} \times 1500}

{\tt \leadsto \dfrac{23}{\cancel{20}} \times \cancel{1500} = \dfrac{23}{1} \times 75}

{\tt \leadsto \dfrac{23 \times 75}{1} = \dfrac{1725}{5}}

{\tt \leadsto \cancel \dfrac{1725}{5} = \orange{\boxed{\tt Rs \: \: 345}}}

\:

Solution (5) :-

Selling price :-

{\tt \leadsto \dfrac{(100 + 25)}{100} \times 250}

{\tt \leadsto \cancel \dfrac{125}{100} \times 250 = \dfrac{5}{4} \times 250}

{\tt \leadsto \dfrac{5 \times 250}{4} = \dfrac{1250}{4}}

{\tt \leadsto \cancel \dfrac{1250}{4} = \orange{\boxed{\tt Rs \: \: 312.5}}}

Similar questions