ANSWER ALL THE
4. IfA
IA-G18 C :)
and (A+B) - A²+B, find a and b.
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given sin(θ+α)=a⟹cos(θ+α)=1−a2
sin(θ+β)=b⟹cos(θ+β)=1−b2
cos(α−β)=cos(θ+α−(θ+β))=cos(θ+α)cos(θ+β)+sin(θ+α)sin(θ+β)=(1−a2)(1−b2)
+ab
cos2(α−β)=(1−a2)(1−b2)+a2b2+2ab(1−a2)(1−b2)
=1−a2−b2+2a2b2+2ab(1−a2)(1−b2)
So
2cos2(α−β)−1−4abcos(α−β)
=2−2a2−2b2+4a2b2+4ab(1−a2)(1−b2)
−1−4a2b2−4ab(1−a2)(1−b2)
=1−2a2−2b2
Similar questions