Math, asked by srdl69, 10 months ago

answer all the questions please​

Attachments:

Answers

Answered by Anonymous
3

Answer 26:

Eq(1) = 4x + 5y = 9 or 4x + 5y - 9 = 0

Eq(2) = 8x + ky = 18 or 8x + ky - 18 = 0

For the standard form of equation ax + by + c = 0, we have:

 \bold{a_1} = 4,  \bold{b_1} = 5 ,  \bold{c_1} = -9 and for the second equation, we get

 \bold{a_2} = 8 ,  \bold{b_2} = k ,  \bold{c_2} = -18

Since, We know that for Infinite solutions, Lines should coincide we can check so by just putting the values of the coefficients in an identity(Mentioned below).

Case: When lines coincide

 \Rightarrow  \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}

 \Rightarrow  \frac{a_1}{a_2} = \frac{b_1}{b_2} \qquad , \qquad \frac{c_1}{c_2} = \frac{b_1}{b_2}

 \Rightarrow  \frac{4}{8} = \frac{5}{k} \qquad , \qquad \frac{-9}{-18} = \frac{5}{k}

 \Rightarrow  \frac{1}{2} = \frac{5}{k} \qquad , \qquad \frac{1}{2} = \frac{5}{k}

 \Rightarrow  \boxed{k=10} \qquad , \qquad \boxed{k=10}

Therefore, k must be equal to 10 to get Infinite solutions for the given system of equations.

Answer 27:

Eq(1) : y = 2x or 2x - y = 0

Eq(2) : y = x + 3 or x - y = -3

We know the standard form of linear equations in two variable which is  \boxed{ax + by + c = 0} , With the given equations,

 \mathtt{\bold{a_1} \: = \: 2} ,  \mathtt{\bold{b_1} \: = \: -1} ,  \mathtt{\bold{c_1} \: = \: 0}

 \mathtt{\bold{a_2} \: = \: 1} ,

 \mathtt{\bold{b_2} \: = \: -1} ,

 \mathtt{\bold{c_2} \: = \: -3}

For unique solutions,  \bold{\frac{a_1}{a_2}} must not be equal to  \bold{\frac{b_1}{b_2}} . With the equations, we have

 \Rightarrow  \mathtt{\frac{a_1}{a_2} \; \neq \; \frac{b_1}{b_2}}

 \Rightarrow  \mathtt{\frac{2}{1} \: \neq \: \frac{-1}{-1}}

 \Rightarrow   \mathtt{2 \neq 1 }

Therefore, The lines intersect each other at a unique point.

By Elimination Method , we get

 \qquad \bold{2x - y = 0}

 \qquad \bold{x\: - y = -3}

 \qquad \boxed{x = 3}^{Subtract}

We get  \bold{x = 3} , Putting the value of x in Eq(2), we get y

x - y = -3

3 - y = -3

-y = -3 + 3

y = 0

Intersecting Point = (x,y) = (3,0)

Answer 28:

Eq(1) : 3x + y = 1

Eq(2) : (2k-1)x + (k-1)y = 2k + 1

Since It is given that we have to find the value of k so that the system of equations has no solution.

We know the standard form of a linear equation is ax + by + c = 0, With the following equations,

 \mathtt{\bold{a_1} \: = \: 3} ,  \mathtt{\bold{b_1} \: = \: 1} ,  \mathtt{\bold{c_1} \: = \: 1}

 \mathtt{\bold{a_2} \: = \: 2k-1} ,

 \mathtt{\bold{b_2} \: = \: k-1} ,

 \mathtt{\bold{c_2} \: = \: 2k + 1}

For no solutions, The lines must be parallel to each other which we can check by the Identity  \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} , We have

 \Rightarrow  \frac{3}{2k-1} = \frac{1}{k-1} \qquad , \qquad \frac{3}{2k-1} \neq \frac{1}{2k+1}

 \Rightarrow  3k - 3 = 2k - 1 \qquad , \qquad 6k + 3 \neq 2k - 1

 \Rightarrow  3k - 2k = - 1 + 3 \qquad , \qquad 6k - 2k \neq -1 - 3

 \Rightarrow  k = 2 \qquad , \qquad k \neq -1

Hence, for k = 2 following system of equations will have no solutions or will be inconsistent.

Answer 29:

Eq(1) :  \sqrt{3}x - \sqrt{7}y = 0

Eq(2) :  \sqrt{8}x - \sqrt{3}y = 0

Multiply the Eq(1) by  \sqrt{3} and Eq(2) by  \sqrt{7} , we get

Eq(3) :  3x - \sqrt{21}y = 0

Eq(4) :  \sqrt{56}x - \sqrt{21}y = 0

On solving Eq(3) and Eq(4) by Elimination Method, We have

 \qquad 3x - \sqrt{21}y = 0

 \qquad \sqrt{56}x - \sqrt{21}y = 0

 \qquad \boxed{(3-\sqrt{56})x = 0}

We get x = 0, putting value of x in Eq(2) , we get y

 \sqrt{3}x - \sqrt{7}y = 0

 \sqrt{3} \cdot 0 - \sqrt{7}y = 0

 - \sqrt{7}y = 0

 \boxed{y = 0}

Therefore, Value of x is 0 and y is 0.

Answer 30:

Eq :  \frac{5}{x} + \frac{3}{y} = 6

It is given that y = 3, Therefore we put the value of y in equation to get x.

 \Rightarrow \qquad \frac{5}{x} + \frac{3}{y} = 6

 \Rightarrow \qquad \frac{5}{x} + \frac{\cancel{3}}{\cancel{3}} = 6

 \Rightarrow \qquad \frac{5 + x}{x} = 6

 5 + x = 6x

 5x = 5

 \boxed{x = 1}

Therefore x will be 1.

Answered by anmolgupta4616
0

Step-by-step explanation:

Answer 26:

Eq(1) = 4x + 5y = 9 or 4x + 5y - 9 = 0

Eq(2) = 8x + ky = 18 or 8x + ky - 18 = 0

For the standard form of equation ax + by + c = 0, we have:

\bold{a_1}a

1

= 4, \bold{b_1}b

1

= 5 , \bold{c_1}c

1

= -9 and for the second equation, we get

\bold{a_2}a

2

= 8 , \bold{b_2}b

2

= k , \bold{c_2}c

2

= -18

Since, We know that for Infinite solutions, Lines should coincide we can check so by just putting the values of the coefficients in an identity(Mentioned below).

Case: When lines coincide

\Rightarrow⇒ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}

a

2

a

1

=

b

2

b

1

=

c

2

c

1

\Rightarrow⇒ \frac{a_1}{a_2} = \frac{b_1}{b_2} \qquad , \qquad \frac{c_1}{c_2} = \frac{b_1}{b_2}

a

2

a

1

=

b

2

b

1

,

c

2

c

1

=

b

2

b

1

\Rightarrow⇒ \frac{4}{8} = \frac{5}{k} \qquad , \qquad \frac{-9}{-18} = \frac{5}{k}

8

4

=

k

5

,

−18

−9

=

k

5

\Rightarrow⇒ \frac{1}{2} = \frac{5}{k} \qquad , \qquad \frac{1}{2} = \frac{5}{k}

2

1

=

k

5

,

2

1

=

k

5

\Rightarrow⇒ \boxed{k=10} \qquad , \qquad \boxed{k=10}

k=10

,

k=10

Therefore, k must be equal to 10 to get Infinite solutions for the given system of equations.

Answer 27:

Eq(1) : y = 2x or 2x - y = 0

Eq(2) : y = x + 3 or x - y = -3

We know the standard form of linear equations in two variable which is \boxed{ax + by + c = 0}

ax+by+c=0

, With the given equations,

\mathtt{\bold{a_1} \: = \: 2}a

1

=2 , \mathtt{\bold{b_1} \: = \: -1}b

1

=−1 , \mathtt{\bold{c_1} \: = \: 0}c

1

=0

\mathtt{\bold{a_2} \: = \: 1}a

2

=1 ,

\mathtt{\bold{b_2} \: = \: -1}b

2

=−1 ,

\mathtt{\bold{c_2} \: = \: -3}c

2

=−3

For unique solutions, \bold{\frac{a_1}{a_2}}

a

2

a

1

must not be equal to \bold{\frac{b_1}{b_2}}

b

2

b

1

. With the equations, we have

\Rightarrow⇒ \mathtt{\frac{a_1}{a_2} \; \neq \; \frac{b_1}{b_2}}

a

2

a

1

b

2

b

1

\Rightarrow⇒ \mathtt{\frac{2}{1} \: \neq \: \frac{-1}{-1}}

1

2

−1

−1

\Rightarrow⇒ \mathtt{2 \neq 1 }2≠1

Therefore, The lines intersect each other at a unique point.

By Elimination Method , we get

\qquad \bold{2x - y = 0}2x−y=0

\qquad \bold{x\: - y = -3}x−y=−3

\qquad \boxed{x = 3}^{Subtract}

x=3

Subtract

We get \bold{x = 3}x=3 , Putting the value of x in Eq(2), we get y

x - y = -3

3 - y = -3

-y = -3 + 3

y = 0

Intersecting Point = (x,y) = (3,0)

Answer 28:

Eq(1) : 3x + y = 1

Eq(2) : (2k-1)x + (k-1)y = 2k + 1

Since It is given that we have to find the value of k so that the system of equations has no solution.

We know the standard form of a linear equation is ax + by + c = 0, With the following equations,

\mathtt{\bold{a_1} \: = \: 3}a

1

=3 , \mathtt{\bold{b_1} \: = \: 1}b

1

=1 , \mathtt{\bold{c_1} \: = \: 1}c

1

=1

\mathtt{\bold{a_2} \: = \: 2k-1}a

2

=2k−1 ,

\mathtt{\bold{b_2} \: = \: k-1}b

2

=k−1 ,

\mathtt{\bold{c_2} \: = \: 2k + 1}c

2

=2k+1

For no solutions, The lines must be parallel to each other which we can check by the Identity \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}

a

2

a

1

=

b

2

b

1

c

2

c

1

, We have

\Rightarrow⇒ \frac{3}{2k-1} = \frac{1}{k-1} \qquad , \qquad \frac{3}{2k-1} \neq \frac{1}{2k+1}

2k−1

3

=

k−1

1

,

2k−1

3

2k+1

1

\Rightarrow⇒ 3k - 3 = 2k - 1 \qquad , \qquad 6k + 3 \neq 2k - 13k−3=2k−1,6k+3≠2k−1

\Rightarrow⇒ 3k - 2k = - 1 + 3 \qquad , \qquad 6k - 2k \neq -1 - 33k−2k=−1+3,6k−2k≠−1−3

\Rightarrow⇒ k = 2 \qquad , \qquad k \neq -1k=2,k≠−1

Hence, for k = 2 following system of equations will have no solutions or will be inconsistent.

Answer 29:

Eq(1) : \sqrt{3}x - \sqrt{7}y = 0

3

x−

7

y=0

Eq(2) : \sqrt{8}x - \sqrt{3}y = 0

8

x−

3

y=0

Multiply the Eq(1) by \sqrt{3}

3

and Eq(2) by \sqrt{7}

7

, we get

Eq(3) : 3x - \sqrt{21}y = 03x−

21

y=0

Eq(4) : \sqrt{56}x - \sqrt{21}y = 0

56

x−

21

y=0

On solving Eq(3) and Eq(4) by Elimination Method, We have

\qquad 3x - \sqrt{21}y = 03x−

21

y=0

\qquad \sqrt{56}x - \sqrt{21}y = 0

56

x−

21

y=0

\qquad \boxed{(3-\sqrt{56})x = 0}

(3−

56

)x=0

We get x = 0, putting value of x in Eq(2) , we get y

\sqrt{3}x - \sqrt{7}y = 0

3

x−

7

y=0

\sqrt{3} \cdot 0 - \sqrt{7}y = 0

3

⋅0−

7

y=0

- \sqrt{7}y = 0−

7

y=0

\boxed{y = 0}

y=0

Therefore, Value of x is 0 and y is 0.

Answer 30:

Eq : \frac{5}{x} + \frac{3}{y} = 6

x

5

+

y

3

=6

It is given that y = 3, Therefore we put the value of y in equation to get x.

\Rightarrow \qquad \frac{5}{x} + \frac{3}{y} = 6⇒

x

5

+

y

3

=6

\Rightarrow \qquad \frac{5}{x} + \frac{\cancel{3}}{\cancel{3}} = 6⇒

x

5

+

3

3

=6

\Rightarrow \qquad \frac{5 + x}{x} = 6⇒

x

5+x

=6

5 + x = 6x5+x=6x

5x = 55x=5

\boxed{x = 1}

x=1

Therefore x will be 1.

Similar questions