Answer and process,pls,very urgent
Attachments:
Answers
Answered by
4
f : N ———>R be a function satisfying following conditions :
f( 1) = 1
f(1) + 2f(2) + 3f(3) +....nf(n ) = n( n +1)f( n)
for n = 2
f(1) +2 f(2) = 2( 2 + 1) f(2)
f(1) + 2f(2) = 6f(2)
f(2) = f(1)/4 = 1/4
for n = 3
f(1) + 2f(2) + 3f(3) = 3(3+1) f(3)
f(1) + 2× f(1)/4 + 3f(3) = 12 f(3)
1 + 1/2 = 9f(3)
3/2 = 9f(3)
f(3) = 1/6
for n = 4
f(1) + 2f(2) + 3f(3) + 4f(4) = 4×5 f(5)
1 + 2× 1/4 + 3× 1/6 + 4 f(4) = 20f(5)
1 + 1/2 + 1/2 = 16f(4)
2 = 16f(4)
f(4) = 1/8
now, we conclude that ,
1 × f(1) = 1
2 × f(2) = 1/2
3 × f(3) = 1/2
4 × f(4) = 1/2
hence,
f(1) +2f(2) + 3f(3) +.....nf(n) = 1 + 1/2 + 1/2 + 1/2 +....1/2 = n( n +1) f( n)
1 + n { 1/2 } = n( n +1)f( n)
1 + n/2 = n( n +1)f( n)
f( n) = ( n +2)/2n( n +1)
nf( n) = (n +2)/2( n +1)
put n = 49
49f( 49) = (49+2)/2×(49+1) = 51/100
f( 1) = 1
f(1) + 2f(2) + 3f(3) +....nf(n ) = n( n +1)f( n)
for n = 2
f(1) +2 f(2) = 2( 2 + 1) f(2)
f(1) + 2f(2) = 6f(2)
f(2) = f(1)/4 = 1/4
for n = 3
f(1) + 2f(2) + 3f(3) = 3(3+1) f(3)
f(1) + 2× f(1)/4 + 3f(3) = 12 f(3)
1 + 1/2 = 9f(3)
3/2 = 9f(3)
f(3) = 1/6
for n = 4
f(1) + 2f(2) + 3f(3) + 4f(4) = 4×5 f(5)
1 + 2× 1/4 + 3× 1/6 + 4 f(4) = 20f(5)
1 + 1/2 + 1/2 = 16f(4)
2 = 16f(4)
f(4) = 1/8
now, we conclude that ,
1 × f(1) = 1
2 × f(2) = 1/2
3 × f(3) = 1/2
4 × f(4) = 1/2
hence,
f(1) +2f(2) + 3f(3) +.....nf(n) = 1 + 1/2 + 1/2 + 1/2 +....1/2 = n( n +1) f( n)
1 + n { 1/2 } = n( n +1)f( n)
1 + n/2 = n( n +1)f( n)
f( n) = ( n +2)/2n( n +1)
nf( n) = (n +2)/2( n +1)
put n = 49
49f( 49) = (49+2)/2×(49+1) = 51/100
Similar questions
Accountancy,
8 months ago
Music,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago