Math, asked by sivakumarganga1975, 7 months ago

answer any one of these ​

Attachments:

Answers

Answered by Darkrai14
3

Question:-

If \rm \dfrac{\sqrt{5}+1}{\sqrt{5}-1}+ \dfrac{\sqrt{5}-1}{\sqrt{5}+1}=a+b\sqrt{5}, find the value of a and b.

Solution:-

Let √5 + 1 = x

and

√5 - 1 = y

Therefore,

\rm\dashrightarrow \dfrac{x}{y}+ \dfrac{y}{x}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{x^2+y^2}{xy}=a+b\sqrt{5}

Substituting the values,

\rm\dashrightarrow \dfrac{(\sqrt{5}+1)^2+(\sqrt{5}-1)^2}{(\sqrt{5}+1)(\sqrt{5}-1)}=a+b\sqrt{5}

We know that,

  • (a + b)(a - b) = a² - b²
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab

Hence,

\rm\dashrightarrow \dfrac{(\sqrt{5})^2+(1)^2+2\times \sqrt{5} \times 1+\bigg [ (\sqrt{5})^2+(1)^2-2 \times \sqrt{5}\times 1 \bigg ]}{(\sqrt{5})^2 - (1)^2}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{5 + 1+2 \sqrt{5}+ \bigg [ 5+1-2 \sqrt{5}\bigg ]}{5-1}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{5 + 1+2 \sqrt{5}+ 5+1-2 \sqrt{5}}{4}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{6+2 \sqrt{5}+6-2 \sqrt{5}}{4}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{6+6}{4}=a+b\sqrt{5}

\rm\dashrightarrow \dfrac{12}{4}=a+b\sqrt{5}

\rm\dashrightarrow 3=a+b\sqrt{5}

Now 3 can be written as

3 + 0√5

Hence,

\rm\dashrightarrow 3+0\sqrt{5}=a+b\sqrt{5}

On comparing we get,

a = 3

b = 0

Answered by Anonymous
2

Answer:

your answer is allready here ✌️✌️

Step-by-step explanation:

thanks for free points ✌️✌️✌️✌️✌️✌️✌️

Similar questions