Math, asked by sree3536, 2 months ago

Answer any questions u know I’ll thank all you questions and mark brainliest

Attachments:

Answers

Answered by krrishkaiga
6

Answer:

Mark me as Brainliest

Step-by-step explanation:

5.

  ( 1 ) A + B

   ⇒ [ 5x² - 3y² + z² ] + [ -2x² + 3y² -4z² ]

   ⇒ 3x² - 3z²

  ( 2 ) A - B

  ⇒ [ 5x² - 3y² + z² ] - [ -2x² + 3y² -4z² ]

 ⇒ 7x² - 6y² + 5z²

6.  Given,

   POQ is a straight line

∴ ∠ POQ = 180°

∠POQ = ∠POR + ∠QOR

    180° = 3x + 2x + 10

    170° = 5x

        x = 170° / 5

        x = 34°

   ∴ x = 34°

7. Given,

  height = base/2

    Area = 144 cm²

    Area = 1/2 × b × h

 144 cm² = 1/2 × b × h

 144 cm² / 2 = b × b / 2

 144 cm² × 2 / 2 = b²

 144 cm² = b²

 b = √144 cm²

 b = 12 cm

∴ Length of height = b / 2 = 12 / 2 = 6 cm & Length of base = 12 cm

8.

( 1 ) a^b + b^-a

 ⇒ ( -1 )² + ( 2 )^-1

 ⇒ 1 + 1/2

 ⇒ 3 / 2

( 2 ) a^-a + b^b

 ⇒ ( - 1 )^-1 + ( 2^2 )

 ⇒ 1 / - 1 + 4

 ⇒ -1 + 4

 ⇒ 3

Answered by amansharma264
14

EXPLANATION.

Question = 1.

A = 5x² - 3y² + z²  and  B = -2x² + 3y² - 4z².

(a) = A + B.

⇒ 5x² - 3y² + z² + (-2x² + 3y² - 4z²).

⇒ 5x² - 3y² + z² - 2x² + 3y² - 4z².

⇒ 5x² - 2x² - 3y² + 3y² + z² - 4z².

⇒ 3x² - 3z².

⇒ 3(x² - z²).

⇒ 3(x - z)(x + z).

(b) = A - B.

5x² - 3y² + z² - (-2x² + 3y² - 4z²).

5x² - 3y² + z² + 2x² - 3y² + 4z².

5x² + 2x² - 3y² - 3y² + z² + 4z².

7x² - 6y² + 5z².

Question = 2.

∠POR = 3x  and  ∠QOR = 2x + 10.

POQ is a straight lines.

As we know that,

⇒ ∠POR + ∠QOR = 180°.

⇒ 3x + 2x + 10 = 180°.

⇒ 5x + 10 = 180°.

⇒ 5x = 180 - 10.

⇒ 5x = 170°.

⇒ x = 34°.

Question = 3.

In a triangle (Δ),

The height is half of the base.

Area = 144cm².

As we know that,

Area of triangle (Δ) = 1/2 x height x base.

⇒ h = b/2.

⇒ 144 = 1/2 x b/2 x b.

⇒ 144 = b²/4.

⇒ 576 = b².

⇒ b = 24cm.

⇒ h = b/2 = 24/2 = 12cm.

Question = 4.

⇒ a = -1  and  b = 2.

(1) = a^(b) + b^(-a).

Put the values in the equation, we get.

⇒ (-1)² + (2)⁽⁻¹⁾.

⇒ 1 + 1/2.

⇒ 2 + 1/2 = 3/2.

(2) = a^(-a) + b^(b).

Put the values in the equation, we get.

⇒ (1)^(-1) + (2)^(2).

⇒ 1 + 4 = 5.

Similar questions