Math, asked by IAmTheBest32, 9 months ago

Answer as fast as possible

With Explaination ​

Attachments:

Answers

Answered by naelraro
0

Answer:

65487 s

Step-by-step explanation:

Answered by dangerousqueen01
2

Step-by-step explanation:

 \frac{6 {(8)}^{n + 1}  + 16 {(2)}^{3n - 2} }{10 {(2)}^{3n + 1} - 7 {(8)}^{n}  }  \\  = \frac{6 {[ {(2)}^{3} ]}^{n + 1}  + 16 {(2)}^{3n - 2} }{10 {(2)}^{3n + 1} - 7 { [{2}^{3}] }^{n}  } \\  =  \frac{6 {(2)}^{3n + 3} + 16 {(2)}^{3n - 2} }{10 {(2)}^{3n + 1}  - 7 {(2)}^{3n} }  \\  =  \frac{6 \times  {2}^{3n} \times  {2}^{3} + 16 \times  {2}^{3n}  \times  {2}^{ - 2} }{10 \times  {2}^{3n}  \times  2 -  7 \times  {2}^{3n} }  \\  =  \frac{ {2}^{3n}(6 \times  {2}^{3}  + 16 \times  {2}^{ - 2}  )}{ {2}^{3n} (10 \times 2 - 7)}  \\  =  \frac{6 \times 8 + 16 \times  \frac{1}{4} }{10 \times 2 - 7}  \\  =  \frac{48 + 4}{20 - 7}  \\  =  \frac{52}{13}  \\  = 4

Similar questions