answer as soon as possible
Answers
Step-by-step explanation:
To show : 1 + cotθ.cot2θ = cotθ.cosec2θ.
1 + cotθ.cot2θ = cotθ.cosec2θ
1 = cotθ.cosec2θ - cotθ.cot2θ
1 = cotθ (cosec 2θ - cot 2θ)
1/cotθ = cosec 2θ - cot 2θ
tanθ = 1/sin 2θ - cos 2θ/sin 2θ
sin θ/ cosθ = (1- cos 2θ)/sin 2θ (i)
Now, we know that,
cos (θ+θ) = cos θ.cos θ - sin θ.sin θ
= cos^2 θ - sin^2 θ
and, sin(θ+θ) = sin θ.cos θ + sin θ.cos θ
= 2(sin θ.cos θ);
Cos 2θ = cos (θ+θ)
and, sin2θ = sin (θ+θ)
Thus, Cos 2θ = cos^2 θ - sin^2 θ;
sin2θ = 2(sin θ.cos θ);
Now, put these two values in equation (i);
Thus, sin θ/ cosθ = (1- cos 2θ)/sin 2θ;
sin θ/ cosθ = (1- (cos^2 θ - sin^2 θ)) / 2(sin θ.cos θ);
sin θ/ cosθ = ((cos^2 θ + sin^2 θ)- (cos^2 θ - sin^2 θ)) / 2(sin θ)(cos θ);
sin θ = (cos^2 θ + sin^2 θ - cos^2 θ + sin^2 θ) / 2(sin θ);
sin θ = (2sin^2 θ) / 2(sin θ);
sin θ = (2)(sin θ)(sin θ) / 2(sin θ);
sin θ = sin θ;
Thus, LHS = RHS
That's all.