Math, asked by kritika1016, 1 year ago

answer by these questions plz ​

Attachments:

Answers

Answered by CaptainBrainly
4

Q - 51 : Find value of p and q if (a² - 4) is a factor of pa⁴ + 2a³ - 3a² + qa - 4

Solution :

Given,

a² - 4 = 0

a² = 4

a = √4

a = ±2

pa⁴ + 2a³ - 3a² + qa - 4

i)Substitute 2 in the place of a.

p(2)⁴ + 2(2)³ - 3(2)² + q(2) - 4 = 0

p(16) + 2(8) - 3(4) + 2q - 4 = 0

16p + 16 - 12 + 2q - 4 = 0

16p + 2q + 16 - 16 = 0

16p + 2q = 0 ----(1)

ii) Substitute -2 in the place of a

p(-2)⁴ + (-2)³ - 3(-2)² + q(-2) - 4 = 0

16p + (-8) - 3(4) - 2q - 4 = 0

16p - 8 - 12 - 2q - 4 = 0

16p - 24 - 2q = 0

16p - 2q = 24 ---------(2)

Solve 1 & 2

16p + 2q = 0

16p - 2q = 24

-----------------

32p = 24

p = 24/32

p = 3/4

Substitute p in eq - (1)

16p + 2q = 0

16(3/4) + 2q = 0

4 + 2q = 0

2q = -4

q = -4/2

q = -2

Therefore, the values of p and q are 3/4 and -2 respectively.

Q - 52 : Factorise 2x³ - 3x² - 17x + 30

Solution :

2x³ - 3x² - 17x + 30

splitting the terms

2x³ - 4x² + x² - 2x - 15x + 30

2x²(x - 2) + x(x - 2) - 15(x - 2)

2x² + x - 15 ; x - 2

2x² + 6x - 5x - 15

2x(x + 3) - 5(x + 3)

(2x - 5) ; (x + 3) ; (x - 2)

Q - 53 : Multiply x² + 4y² + z² + 2xy + xz - 2yz by (-z + x - 2y)

Solution : Refer the attachement !

Q - 54 :

(i) p(2) = x² - 5x + 4

p(2) = (2)² - 5(2) + 4

p(2) = 4 - 10 + 4

p(2) = 8 - 10

p(2) = -2

ii) p(3) = x² - 5x + 4

p(3) = (3)² - 5(3) + 4

p(3) = 9 - 15 + 4

p(3) = 13 - 15

p(3) = -2

No, p(3) is not a factor.

iii) Factorise x² - 5x + 4

x² + x + 4x + 4

x(x + 1) + 4(x + 1)

(x + 4 ) ; (x + 1)

Attachments:
Similar questions