Math, asked by FakeWorld99, 7 months ago

Answer correctly above ques.​

Attachments:

Answers

Answered by vanshikavikal448
61

 \huge \bold \color{red} \mathfrak{solution} :-

  \bold{ \underline{ \underline{given \: lines : }}}

ax + 3y  = 7 \\ and \\ (a - 1)x + 2y = b

note:-

if general equation is in the form of ax+by+c = 0

then..slope

 \bold{slope =  \frac{ - a}{b} }

slope of line ax+3y=7 or ax+3y-7=0 :-

   \bold{ =  \frac{ - a}{3} }

slope of line (a-1)x+2y=b or (a-1)x+2y-b = 0 :-

 \bold{ =  \frac{ - a + 1}{2} }

we know that..if two lines are perpendicular..then.. product of their slopes is -1

 \bold{ \implies \frac{ - a}{3}  \times  \frac{( - a + 1)}{2}  =  - 1}

 \bold{ \implies \frac{ {a}^{2} - a }{6}  =  - 1}

  \bold{\implies {a}^{2}  - a =  - 6 }\\   \bold{\implies {a}^{2}  - a + 6}

now solve this quadratic equation by quadratic formula..

we get :-

 \bold{a =  \frac{ - 1 -  \sqrt{23} }{2}  \: and \:  \frac{ - 1 +  \sqrt{23} }{2} }

sum of squares of value of a :-

 \bold{ { (\frac{ - 1 -  \sqrt{23} }{2} )}^{2}  +  {( \frac{1 +  \sqrt{23} }{2} )}^{2} }

  \bold{\implies( \frac{1 + 23 - 2 \sqrt{23} }{4} ) + ( \frac{1 + 23 + 2 \sqrt{23} }{4} )}

 \bold{ \implies( \frac{12 -  \sqrt{23} }{2} ) + ( \frac{12 +  \sqrt{23} }{2})}

  \bold{\implies \frac{12 -  \sqrt{23 }  + 12 +  \sqrt{23} }{2} }

 \bold{ \implies \frac{12 + 12}{2} } = 12

so sum of squares of value of a is 12

Similar questions