Answer correctly and only If you know!
Trigonometry!!!
●Find the value of cos 75°?
●Find the value of sin 135° ?
●
No spam !!.
Answers
Answer:
Step-by-step explanation:
You can write cos 75= cos (45+30)
Now cos (a+b)= cos a*cos b-sin a* sin b
So,
cos (45+30)=cos 45*cos 30- sin 45* sin 30
You know the value of cos45 sin45 cos 30 and sin 30
So cos (45+30)={(1/sqrt 2)*(sqrt 3/2)-(1/sqrt 2)* 1/2)}
Solving that you will get
sqrt 3 - 1/2*sqrt 2
sin(135)
= sin (90 + 45) // sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
= sin(90)cos(45) + cos(90)sin(45)
= ( 1 x 1/√2) + (0 x 1/√2)
= 1/√2
= (√2)/2
Step-by-step explanation:
(1) Cos75°
Cos(45° + 30°)
Cos45° Cos30° - Sin45° Sin30°
(1/√2)*(√3/2) - (1/√2)*(1/2)
√3/(2√2) - 1/(2√2)
(√3 - 1)/2√2
(2) Sin(135°)
Sin(180° - 45°)
Sin (π - 45°)
Sin45°
= 1/√2
(3) Sin²48°/Cos²48° + 1
tan²48° + 1
= Sec²48°