Math, asked by sreenidhigandham, 5 months ago

Answer correctly
With steps
Answer fastly
Need full process​

Attachments:

Answers

Answered by saiyedfazil
3

tan^2o - sin^2o = tan^2o.sin^2o

sin^2o/cos^2o - sin^2o/1 = tan^2o.sin^2o

sin^2o - cos^2o sin^2o/ cos^2o = tan^2o.sin^2o

sin^2o(1-cos^2o)/cos^2o = tan^2o.sin^2o

sin^2o×(sin^2o)/cos^2=tan^2o.sin^2o

sin^2o . tan^2o = tan^2o.sin^2o

please follow me

Answered by Anonymous
12

\large\underline{\underline{\frak{\qquad Solution:\qquad}}} \\

:\implies \sf LHS = \tan^2 ( \theta)  -  \sin^{2}(\theta)  \\  \\  \\

:\implies \sf  \dfrac{ \sin^{2} (\theta) }{\cos^{2} (\theta)}-  \sin^{2}(\theta)  \\  \\  \\

:\implies \sf  \sin^{2}(\theta)  \bigg \lgroup\dfrac{1}{\cos^{2} (\theta)}  - 1 \bigg \rgroup \\  \\  \\

:\implies \sf  \sin^{2}(\theta)  \bigg \lgroup\dfrac{1 - \cos^{2} (\theta)}{\cos^{2} (\theta)}  \bigg \rgroup \\  \\  \\

:\implies \sf  \sin^{2}(\theta)  \bigg \lgroup\dfrac{\sin^{2} (\theta)}{\cos^{2} (\theta)}  \bigg \rgroup \\  \\  \\

:\implies \sf  \sin^{2}(\theta)  .\tan^{2} (\theta)  \\  \\  \\

:\implies \underline{ \boxed{ \sf \tan^{2} (\theta). \sin^{2}(\theta) =R.H.S }}  \\  \\  \\

:\implies \underline{ \boxed{ \sf L.H.S = R.H.S }}  \\  \\  \\

:\implies \underline{ \boxed{ \sf Hence  \: Proved. }}  \\  \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{\frak{\qquad Formuals \:  related  \: to \:  it:\qquad}}} \\

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

══════════════════════════════════════════════════

Similar questions