Math, asked by jaleel123, 16 days ago

ANSWER CORRECTLY WITHOUT SPAMING ​

Attachments:

Answers

Answered by SparklingBoy
25

\large \bf \clubs \:  Given :-

 \sf \mathtt x = 5  - 2 \sqrt{6}

-----------------------

\large \bf \clubs \:  To  \: Find :-

 \tt {x}^{2}   +  \dfrac{1}{ {x}^{2} }

-----------------------

\large \bf \clubs \:  Solution  :-

We Have,

 \tt {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Adding and Subtracting 2 :

 =  \tt {x}^{2}  +  \dfrac{1}{ {x}^{2} } + 2 - 2  \\  \\  =  \tt  \bigg({x +   \frac{1}{x}  \bigg)}^{2}  - 2

Putting Value of x :

 =   \sf {\bigg(5 - 2 \sqrt{6}  +  \dfrac{1}{5 - 2 \sqrt{6} }  \bigg)}^{2}   - 2\\  \\ \sf =  {\bigg(5 - 2 \sqrt{6}  +  \frac{1}{5 - 2 \sqrt{6}}   \times  \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} }  \bigg)}^{2}  - 2 \\  \\  \sf =   { \bigg(5 - 2 \sqrt{6}  +  \frac{5 + 2 \sqrt{6} }{25 - 24}  \bigg)}^{2}  - 2 \\  \\  \sf = (5 -   \cancel{2\sqrt{6}}  + 5 + \cancel{ 2 \sqrt{6}} ) {}^{2}  - 2 \\  \\  \sf =  {(10)}^{2}  - 2 \\  \\  = 100 - 2 \\  \\  = 98

Hence,

\qquad\Large\underline{\underline{ \pink{\bf {x}^{2}   +  \dfrac{1}{ {x}^{2}}=98 }}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by TYKE
38

 \overline{ \underline{ \boxed{ \sf QUESTION \:  \darr}}}

  • If x = 5 - 2√6, find x² + 1/x²

 \overline{ \underline{ \boxed{ \sf IDENTITY  \:  \darr}}}

 \star \:\orange{\underline\green{{ \boxed{ \red{ \mathfrak{ {a}^{2} +  {b}^{2}  =  {(a + b)}^{2} - 2ab}}}}}}

\overline{ \underline{ \boxed{ \sf CONCEPT \:  \darr}}}

Rarionalsation :

  • The process of multiplying a surd by another surd to get a rational number is called rationalisation.

  • Each surd is called rationalising factor of another surd.

Rule to Rationalise the denominator of an expression :

  • Multiply and divide the numerator and denominator of the given expression by rationalising factor of its denominator and simplify.

  \overline{ \underline{ \boxed{ \sf SOLUTION \:  \darr}}}

Given that :

x = 5 - 2√6

So,

1/x must be 1/(5 - 2√6) by putting the value of x in the denominator

Now to rationalise the denominator :

 \sf \looparrowright \frac{1}{x}  =  \frac{1}{5 - 2 \sqrt{6} }

 \sf \looparrowright \frac{1}{x}  =  \frac{1(5 + 2 \sqrt{6} )}{(5 - 2 \sqrt{6})(5 + 2 \sqrt{6})  }

Now applying identity for the denominator :

(a - b)(a + b) = a² - b²

Here,

a → 5

b → 2√6

  \sf \looparrowright\frac{1}{x}  =  \frac{5 + 2 \sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6} )}^{2}  }

 \sf \looparrowright\frac{1}{x}  =  \frac{5  +  2 \sqrt{6} }{25 - 24}

  \star \:   \red{\underline{ \small{ \purple{\boxed{ \frak{ \green{\frac{1}{x} = 5  +  2 \sqrt{6}}}}}}}}

Now adding x with 1/x we get

 \sf \rarr x +  \frac{1}{x}

Putting their values we get

 \sf \rarr5  + 2 \sqrt{6}  + 5  - 2 \sqrt{6}

 \sf \rarr5 +  \cancel{2 \sqrt{6} }  + 5 -  \cancel{2 \sqrt{6} }

  \star \:  \underline{ \boxed{\mathfrak{x +  \frac{1}{x} =  10}}}

Now we need to find x² + 1/x²

Applying the identity we get

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x}) }^{2}  - 2

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(10)}^{2}  - 2

 \sf \leadsto {x}^{2}  +  \frac{1}{ {x}^{2} }  = 100 - 2

 \leadsto  \underline{ \boxed{ \mathfrak{{x}^{2}  +  \frac{1}{ {x}^{2} }  = 98}}}

  • Hence, the answer is 98

 \overline{ \underline{ \boxed{ \sf LEARN  \: MORE \:  \darr}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} }}}

\star \: \underline{ \boxed{ \mathfrak{ {(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} }}}

\star \: \underline{ \boxed{ \mathfrak{ {a}^{2} + {b}^{2} = {(a + b)}^{2} - 2ab }}}

\star \: \underline{ \boxed{ \mathfrak{ {a}^{2} + {b}^{2} = {(a - b)}^{2} + 2ab}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} - {(a - b)}^{2} = 4ab }}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca) }}}

 \star \: \underline{ \boxed{ \mathfrak{ {(a + b - c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc - ca) }}}

Similar questions