Math, asked by jaleel123, 1 month ago

ANSWER CORRECTLY WITHOUT SPAMING​

Attachments:

Answers

Answered by bagkakali
1

Answer:

x=(√5-2)/(√5+2)

y=(√5+2)/(√5-2)

x.y=(√5-2)/(√5+2).(√5+2)/(√5-2)=1

x+y=(√5-2)/(√5+2)+(√5+2)/(√5-2)

={(√5-2)^2+(√5+2)^2}/{(√5+2).(√5-2)}

=(5+4-4√5+5+4+4√5)/(√5^2-2^2)

=18/(5-4)

=18/1

=18

so,

x^2+y^2+xy

=(x+y)^2-2xy+xy

=(x+y)^2-xy

=(18)^2-1

=324-1

=323

Answered by TYKE
37

\overline{\underline{\boxed{\sf  \: QUESTION \:  \darr}}}

  \sf{If \: x =  \frac{ \sqrt{5}  - 2}{ \sqrt{5}  + 2}  \: and \: y =  \frac{ \sqrt{5} + 2 }{ \sqrt{5}  - 2}  \: then \: find \: the \: value \: of \:  {x}^{2}  + xy +  {y}^{2}  }

\overline{\underline{\boxed{\sf SOLUTION \: \darr}}}

We are given that

  \green{\sf{x =  \frac{ \sqrt{5} - 2 }{ \sqrt{5}  + 2}}}

Hence, by rationalising it we get

 \sf \mapsto  \blue{x =  \frac{( \sqrt{5} - 2)( \sqrt{5}  -  2)  }{( \sqrt{5}  + 2)( \sqrt{5} - 2)}}

Applying identity :

For numerator

  • (a - b)(a - b) = a² - 2ab + b²

For denominator

  • (a + b)(a - b) = a² - b²

Here,

a refers √5

ab refers √5 × 2 = 2√5

b refers 2

 \sf \mapsto  \blue{x =  \frac{ {( \sqrt{5} - 2) }^{2} }{ {( \sqrt{5}) }^{2} -  {(2)}^{2}  } }

 \sf \mapsto  \blue{x =  \frac{ {( \sqrt{5} )}^{2} - 2 \times  \sqrt{5} \times 2 +  {(2)}^{2}   }{5 - 4} }

 \sf \mapsto  \blue{x =  \frac{5 - 4 \sqrt{5}  + 4}{1} }

 \sf \mapsto  \blue{x = 9 - 4 \sqrt{5} }

☢\:\red{\underline{\boxed{ \orange{\sf x = 9 - 4 \sqrt{5}}}}}

  • So after rationalising the value of x is 9 - 4√5

Now, to rationalise y

 \sf  \leadsto  \red{y =  \frac{ \sqrt{5} + 2}{ \sqrt{5} - 2 }}

Rationalising it we get

 \sf \leadsto  \purple{y = \frac{ (\sqrt{5}  + 2)( \sqrt{5}  + 2)}{( \sqrt{5} - 2)( \sqrt{5}  + 2)}}

Applying identity :

For numerator

  • (a + b)(a + b) = a² + 2ab + b²

For denominator

  • (a + b)(a - b) = a² - b²

Here,

a refers √5

ab refers √5 × 2 = 2√5

b refers 2

  \sf \leadsto  \purple{y = \frac{  {( \sqrt{5} + 2) }^{2}  }{ {( \sqrt{5}) }^{2} -   {(2)}^{2}   } }

  \sf \leadsto  \purple{y = \frac{ {( \sqrt{5}) }^{2} + 2 \times  \sqrt{5}  \times 2 +  {(2)}^{2}  }{5 - 4} }

 \sf \leadsto  \purple{y = \frac{5 + 4 \sqrt{5} + 4 }{1} }

☣ \:    \underline{\boxed{ \purple{ \sf y = 9 + 4 \sqrt{5} }}}

Now to find the given condition

 \sf    \blue{{x}^{2}  + xy +  {y}^{2}}

Putting the values we get :

\sf\looparrowright\green{({9 - 4 \sqrt{5})}^{2}  + (9 - 4 \sqrt{5})(9 + 4 \sqrt{5}) +  {(9 + 4 \sqrt{5} )}^{2}   }

\small\sf\looparrowright\green{ {(9)}^{2} - 72\sqrt{5}   +    {(4 \sqrt{5}) }^{2}  + {(9)}^{2} -  {( 4\sqrt{5} )}^{2}   +   {(9)}^{2} + 72\sqrt{5} +  {(4 \sqrt{5} )}^{2}   }

\sf\looparrowright\green{ {(9)}^{2}   +  {(9)}^{2}  +  {(9)}^{2} +  {(4 \sqrt{5}) }^{2}  }

\sf\looparrowright\green{81 + 81 + 81 + 80}

\sf\looparrowright\green{323}

  • Hence, the answer is 323

\overline{ \underline{ \boxed{ \sf LEARN \: MORE \: \darr}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} }}}

\star \: \underline{ \boxed{ \mathfrak{ {(a - b)}^{2} = {a}^{2} - 2ab + {b}^{2} }}}

\star \: \underline{ \boxed{ \mathfrak{ {a}^{2} + {b}^{2} = {(a + b)}^{2} - 2ab }}}

\star \: \underline{ \boxed{ \mathfrak{ {a}^{2} + {b}^{2} = {(a - b)}^{2} + 2ab}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} + {(a - b)}^{2} = 2( {a}^{2} + {b}^{2} )}}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} - {(a - b)}^{2} = 4ab }}}

\star \: \underline{ \boxed{ \mathfrak{ {(a + b + c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc + ca) }}}

 \star \: \underline{ \boxed{ \mathfrak{ {(a + b - c)}^{2} = {a}^{2} + {b}^{2} + {c}^{2} + 2(ab + bc - ca) }}}

Similar questions