Math, asked by ava4495, 4 months ago

answer fast and take pionts

no spam -_-"​

Attachments:

Answers

Answered by AadityaSingh01
3

Solution:-

Q1.) We have to solve these using laws of exponents, simplify and write the answer in exponential form:-

(i)  6^{13} × 6^{12}  

6^{12+13}                                    [ a^{n} × a^{m} = a^{n+m} ]

6^{25}

(ii)  5^{13} ÷ 5^{8}

5^{13 - 8}                                 [ a^{n} ÷ a^{m} = a^{n-m} ]

5^{5}

(iii) a^{x} × a^{y}

⇒  a^{x + y}                                    [ a^{n} × a^{m} = a^{n+m} ]

(iv) (6^{3})^{5}

6^{3 * 5}                                     [ (a^{n})^{m} = a^{nm} ]

6^{15}  

(v) p^{4} ÷ p^{41}

p^{4-41}                         [ a^{n} ÷ a^{m} = a^{n-m} ]

p^{-37}

(vi) ( 3^{5} × 3^{2})^{8}

(3^{5+2})^{8}                        [ a^{n} × a^{m} = a^{n+m}  and  (a^{n})^{m} = a^{nm} ]

3^{7 * 8}      ⇔ 3^{56}

Q2.) Simplify and write the answer in exponential form:-

(i)  (11^{3})^{4}

11^{3 * 4}                        [ (a^{n})^{m} = a^{nm} ]

11^{12}

(ii) (4^{10} ÷ 4^{16}) × 4^{6}

(4^{10-16}) × 4^{6}                   [ a^{n} ÷ a^{m} = a^{n-m} ]

4^{-6} × 4^{6}                            [ a^{n} × a^{m} = a^{n+m} ]

4^{-6+6}

4^{0}       ⇔  1                          [ a^{0} = 1 ]

(iii) (-\dfrac{1}{5})^{-2}

(-5)^{2}                            [ a^{-n} = (\dfrac{1}{a})^{2} ]

Some Important Terms:-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\\\\\bigstar\:\:\sf(a^0) = 1\end{minipage}}\end{gathered}

Answered by soumya1613
2

Answer: sorry for spamming

hi sis hru

my name is Soumya

I am also a girl

I am 14

in class 9th this year

from Chhattisgarh

nice to meet you

Similar questions