Math, asked by Anonymous, 4 months ago

Answer fast as you can.​

Attachments:

Answers

Answered by Anonymous
8

\LARGE\star\mathfrak{\underline{\underline{\red{ǫᴜᴇsᴛɪᴏɴ: }}}}

 \sf{prove \: that \:  \frac{1}{sin {}^{2} \theta  } -  \frac{1}{sin {}^{2} \phi }  } =  \frac{cos {}^{2}  \theta - cos {}^{2} \phi }{sin {}^{2}  \theta.sin {}^{2} \phi }  \\

\LARGE\star\mathfrak{\underline{\underline{\red{answer: }}}}

Taking LHS :-

  \sf{  \frac{1}{sin {}^{2} \theta } -   \frac{1}{sin \phi}  } \\ \\   \sf{ =  \frac{sin {}^{2} \phi - sin {}^{2}  \theta }{sin {}^{2} \theta.sin {}^{2}  \phi } } \\  \\   \sf{identity :sin {}^{2}   \theta = 1 - cos {}^{2}  \theta}   \\ \\  \sf{ \frac{(1 - cos {}^{2} \phi) - (1 - cos {}^{2}  \theta )}{sin {}^{2}  \theta.sin {}^{2} \phi } } \\ \\   \sf{ \frac{1 - cos { }^{2}  \phi - 1 + cos {}^{2}  \theta }{sin {}^{2}  \theta.sin {}^{2}  \phi} } \\   \\ \sf{ \frac{cos {}^{2} \theta - cos {}^{2}   \phi}{sin {}^{2} \theta.sin {}^{2}   \phi} }  \\  \\  \sf{ʟʜs = ʀʜs}  \\  \sf{hence \: proved}

Similar questions