Math, asked by Anonymous, 6 months ago

answer fast.......
don't give irrelevant answer......​

Attachments:

Answers

Answered by Anonymous
16

2) The sides opposite to equal angles of a triangle are equal. Prove that if two angles of a triangle are congruent, then the triangle is isosceles

MARK BRAINLIST PLS......

#LAKSHYA....

Answered by thebrainlykapil
187

\huge\mathbb\red{Question2:-}

\huge{\underline{\underline{Given→}}}

\sf\green{AB \: = \: AC}

\sf\green{∠\: B \: = \:  ∠\: C}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:In\:∆ABD \: and \: ∆ACE }} }\\ \\\end{gathered}\end{gathered}

  • AB = AC

∠BAD = ∠ CAE

∠BDA = ∠ CEA

\sf\blue{∆ABD\: ≈\:∆ACE}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: By \: AAS /: rule }} }\\ \\\end{gathered}\end{gathered}

\sf\blue{ BD \:=\: CE }

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: By \: CPCT }} }\\ \\\end{gathered}\end{gathered}

diagram in attachment

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\mathbb\red{Question3:-}

 \mathrm{\boxed{\boxed{\pink{→   Given ✔}}}}

\sf\blue{ A\: △ABC \:in \:which\: ∠B=∠C.  }

 \mathrm{\boxed{\boxed{\pink{→   To\: Prove✔}}}}

\sf\blue{  AB=AC}

 \mathrm{\boxed{\boxed{\pink{→  Construction✔}}}}

\sf\blue{  Draw\: the\: bisector \:of\: ∠A \:and\: let\: it \:meet\: BC\: at\: D.}

Proof :

In △s ABD and ACD,

∠B=∠C

∠BAD=∠CAD

AD=AD

So, by AAS criterion of congruence,

△ABD≅△ACD

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: ⟹\:AB\:=\:AC  }} }\\ \\\end{gathered}\end{gathered}

diagram in attachment

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions