Math, asked by chandranidas1978, 1 month ago

answer fast fully explain
question in pic​

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

\sf \implies \displaystyle  \lim_{x \to 0} \bigg(\dfrac{x^{2} }{sinx^{2} } \bigg)

As we know that,

Formula of :

\sf \implies \displaystyle  \lim_{x \to 0} \bigg(\dfrac{x}{sin(x)} \bigg) = 1.

Using this formula in the equation.

We can write equation as,

\sf \implies \displaystyle  \lim_{x \to 0} \bigg( \dfrac{x}{sin(x)} \bigg)^{2} = (1)^{2} = 1.

\sf \implies \displaystyle  \lim_{x \to 0} \bigg(\dfrac{x^{2} }{sinx^{2} } \bigg) = 1.

                                                                                                                 

MORE INFORMATION.

(1) = eˣ = 1 + x + x²/2! + x³/3! + . . . . .

(2) = e⁻ˣ = 1 - x + x²/2! - x³/3! + . . . . .

(3) = ㏒(1 + x) = x - x²/2 + x³/3 - . . . . .

(4) = ㏒(1 - x) = - x - x²/2 - x³/3 - . . . . .

(5) = aˣ = 1 + (x ㏒ a) + (x ㏒ a)²/2! + (x ㏒ a)³/3! + . . . . .

(6) = sin x = x - x³/3! + x⁵/5! - . . . . .

(7) = cos x = 1 - x²/2! + x⁴/4! - . . . . .

(8) = tan x = x + x³/3 + 2x⁵/15 + . . . . .

Answered by TrustedAnswerer19
6

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \bf  \:  \hookrightarrow \:  given \:  :   \\  \\ \rm  \displaystyle\lim_{ x \to  0}  \rm \:  \frac{  \green{{x}^{2}} }{sin \:   \green{{x}^{2} }} \\  \\ {\pink{ { \boxed{ \begin{array}{cc}   \sf \: we \: know \: that :  \\  \\\sf \hookrightarrow \: \rm\displaystyle\lim_{ x \to  0}  \rm \:  \frac{ \blue{x}}{sin \: \blue{ x}} = 1 \\  \\ \rm \hookrightarrow \:  \rm  \displaystyle\lim_{ x \to 0} \rm \frac{sin \: x}{x}   = 1\end{array}}}}} \\  \\   \sf \: according \: to \: the \: question \:  \\  \\  \rm \:   \green{{x}^{2} }  \: denotes \:  = \blue{ x} \\  \\  \bf \: so \\  \\   = \rm  \displaystyle\lim_{ x \to  0}  \rm \frac{ \green{ {x}^{2} }}{sin  \:  \green{ {x}^{2}} } \\  \\  = 1  \\  \\   \boxed{\sf \: final \: answer \:  :\rm  \displaystyle\lim_{ x \to 0} \rm \frac{ {x}^{2} }{sin \:  {x}^{2} }  = 1} \end{array}}}}}

Remember :

 \sf \hookrightarrow \:   \rm \: sin \:  {x}^{2}   \neq \:  {(sin \: x)}^{2}  \\  \\ \sf \hookrightarrow \:   \rm \: ( {sin \: x)}^{2}  =  {sin}^{2}  \: x

So,

 \rm \frac{ {x}^{2} }{sin \:  {x}^{2} }  \neq \:  ({ \frac{x}{sin \: x} })^{2}

Similar questions