Answer Fast Guys to get points
Answers
Solution 1:
Given Polynomial:
= 4x⁴ + 8x² + 9
Can be written as:
= 4x⁴ + (12 - 4)x² + 9
= 4x⁴ + 12x² - 4x² + 9
= 4x⁴ + 12x² + 9 - 4x²
= (2x²)² + 2 × (2x²) × (3) + (3)² - 4x²
Using identity a² + 2ab + b² = (a + b)², we can write:
= (2x² + 3)² - 4x²
= (2x² + 3)² - (2x)²
Using identity a² - b² = (a + b)(a - b), we get:
= (2x² + 2x + 3)(2x² - 2x + 3)
★ Therefore, the factorised form of the polynomial is (2x² + 2x + 3)(2x² - 2x + 3)
Solution 2:
Given Polynomial:
= x⁴ + x² + 1
Can be written as:
= x⁴ + (2 - 1)x² + 1
= x⁴ + 2x² - x² + 1
= x⁴ + 2x² + 1 - x²
= (x²)² + 2 × (x²) × 1 + (1)² - x²
Using identity a² + 2ab + b² = (a + b)², we can write:
= (x² + 1)² - x²
= (x² + 1)² - (x)²
Using identity a² - b² = (a + b)(a - b), we get:
= (x² + x + 1)(x² - x + 1)
★ Therefore, the factorised form of the polynomial is (x² + x + 1)(x² - x + 1)
Answers:
- (2x² + 2x + 3)(2x² - 2x + 3)
- (x² + x + 1)(x² - x + 1)
refer the given attachment