Math, asked by zaraatif07, 1 month ago

Answer fast I will mark as brainliest. No nonsense answers. Give step by step explanation. If u will not, I will report

Attachments:

Answers

Answered by anindyaadhikari13
10

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

 \sf = \bigg(-\dfrac{2}{3} \bigg)^{10}  \times \bigg(-\dfrac{2}{3} \bigg)^{ - 15} \div \bigg(-\dfrac{2}{3} \bigg)^{25}

As we know that:

 \sf \implies {x}^{a} \times  {x}^{b}  =  {x}^{a + b}

 \sf \implies {x}^{a}  \div   {x}^{b}  =  {x}^{a  -  b}

We get:

 \sf = \bigg(-\dfrac{2}{3} \bigg)^{10 - 15} \div \bigg(-\dfrac{2}{3} \bigg)^{25}

 \sf = \bigg(-\dfrac{2}{3} \bigg)^{ - 5} \div \bigg(-\dfrac{2}{3} \bigg)^{25}

 \sf = \bigg(-\dfrac{2}{3} \bigg)^{ - 5 - 25}

 \sf = \bigg(-\dfrac{2}{3} \bigg)^{ -30}

 \sf = \bigg(\dfrac{2}{3} \bigg)^{ -30} \:  \:  \: (Answer)

\texttt{\textsf{\large{\underline{Know More}:}}}

If a, b are positive real numbers and m, n are rational numbers, then the following results hold -

 \sf 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \sf 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\sf 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \sf4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \sf5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \sf6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \sf7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \sf8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions