Math, asked by meteddy, 2 months ago

Answer fast.i will mark u brainliest​

Attachments:

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha  \: and \:  \beta \: are \: zeroes \: of \: k {x}^{2} + 4x + 4

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha + \beta  =  -  \: \dfrac{4}{k} -  -  - (1)

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha \beta \: =\: \dfrac{4}{k} -  -  - (2)

Now, further it is given that

\rm :\longmapsto\: { \alpha }^{2}  +  { \beta }^{2} = 24

\rm :\longmapsto\: {(\alpha +  \beta ) }^{2} - 2 \alpha  \beta = 24

\rm :\longmapsto\: {\bigg( - \dfrac{4}{k} \bigg) }^{2} - 2 \times \dfrac{4}{k}   = 24

\rm :\longmapsto\:\dfrac{16}{ {k}^{2} }  - \dfrac{8}{k}  = 24

\rm :\longmapsto\:\dfrac{16 - 8k}{ {k}^{2} } = 24

On dividing by 8, we get

\rm :\longmapsto\:\dfrac{2 - k}{ {k}^{2} } = 3

\rm :\longmapsto\:2 - k =  {3k}^{2}

\rm :\longmapsto\: {3k}^{2} + k - 2 = 0

\rm :\longmapsto\: {3k}^{2} + 3k - 2k - 2 = 0

\rm :\longmapsto\:3k(k + 1) - 2(k + 1) = 0

\rm :\longmapsto\:(k + 1)(3k - 2) = 0

\rm :\implies\:k =  - 1 \:  \:  \: or \:  \:  \: k = \dfrac{2}{3}

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option \: (B) \: is \: correct}}}

Additional Information :-

\rm :\longmapsto\: \alpha, \:  \beta, \: \gamma  are \: zeroes \: of \:  {ax}^{3} +  b{x}^{2} + cx + d \: then

 \boxed{ \sf{ \:  \alpha  +  \beta  +  \gamma  =  -  \:  \frac{b}{a}}}

 \boxed{ \sf{ \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha   =   \:  \frac{c}{a}}}

 \boxed{ \sf{ \:  \alpha\beta \gamma  =  -  \:  \frac{d}{a}}}

Similar questions