Math, asked by TheRiskyGuy, 7 months ago

ANswer Fast...Perfect Ans... ​

Attachments:

Answers

Answered by Thatsomeone
4

Step-by-step explanation:

 \sf \star \: Question \: 7 \: \star \\ \\ \sf y {({x}^{3}-2x-1)}^{5} \\ \\ \sf differentiating \: with \: respect \: to \: x \\ \\ \sf \frac{dy}{dx} = 5{({x}^{3}-2x-1)}^{5-1} × \frac{d({x}^{3}-2x-1)}{dx} \\ \\ \sf \frac{dy}{dx} = 5{({x}^{3}-2x-1)}^{4} × ( 3{x}^{2}-2) \\ \\ \sf \frac{dy}{dx} = 5(3{x}^{2}-2){({x}^{3}-2x-1)}^{4}

Answered by Anonymous
8

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \star \: your \: answer \:  \star

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  y{(x}^{3}  - 2x -  {1}^{5)}

. differentiating with respect to x

 \frac{dy}{dx} = 5( {x}^{2} - 2x -  {5 }^{5 - 1} \times  \frac{d( {x}^{3 - 2x - 1}) }{dx}

 \frac{dy}{dx}  = 5( {x}^{3} - 2x -  {1}^{4}) \times  ({3}^{2} - 2)

Hope this will help you ...

Similar questions