Math, asked by ampshubha, 10 months ago

Answer Fast please ​

Attachments:

Answers

Answered by sahilshenoy3
2

Hi

Hope you understood

Thank you!!

Attachments:
Answered by Anonymous
0

Step-by-step explanation:

 \frac{ \cos( \alpha ) }{1 -  \tan( \alpha ) }  +  \frac{ \sin( \alpha ) }{1 -  \cot( \alpha ) }  \\

WE know that :

 \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  \\  \cot( \alpha )  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }

taking \: lhs \\  \frac{ \cos( \alpha ) }{1 -  \frac{ \sin( \alpha ) }{ \cos( \alpha ) } }  +  \frac{ \sin( \alpha ) }{1 -  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } }  \\  \frac{ \cos( \alpha ) }{ \frac{ \cos\alpha  -  \sin( \alpha )  }{ \cos( \alpha ) } }  +  \frac{ \sin( \alpha ) }{ \frac{ \sin( \alpha )  -  \cos( \alpha ) }{ \sin( \alpha ) } }  \\  \frac{ { \cos( \alpha ) }^{2} }{ \cos( \alpha )  -  \sin( \alpha ) }  +  \frac{ { \sin( \alpha ) }^{2} }{ \sin( \alpha )  -  \cos( \alpha ) }  \\ taking \cos( \alpha )  -   \sin( \alpha )  \\  \frac{ { \cos( \alpha ) }^{2} }{ \cos( \alpha ) -  \sin( \alpha )  }  -  \frac{ { \sin( \alpha ) }^{2} }{ \cos( \alpha ) -  \sin( \alpha )  }  \\   \frac{ { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2} }{ \cos( \alpha )  -  \sin( \alpha ) }  \\  \frac{ (\cos \alpha  -  \sin\alpha) ( \cos \alpha +  \sin\alpha )  }{ \cos( \alpha ) -  \sin( \alpha )  }  \\  cancelling \\  \cos( \alpha )  -  \sin( \alpha )  \\ lhs =  \cos( \alpha )  +  \sin( \alpha )

LHS = RHS

HENCE PROVED

Similar questions